
 

 

 

 

Abstract—In this work, we proposed a novel method to 

investigate the underlying rapid pressure-to-flow dynamics 

induced by changes of arterial CO2. Autoregulation was 

modeled as a multivariate system. The instantaneous effect of 

CO2 to cerebral blood flow velocity (CBFV) was removed 

adaptively by the recursive least square (RLS) method from 

CBFV. The residue CBFV and arterial blood pressure (ABP) 

were then filtered by a Gaussian-modulated sinusoidal pulse 

filter, in order to optimize the time and frequency resolution 

when estimating the instantaneous phase difference between the 

signals using Hilbert transform (HT). The results indicate that 

the effect of CO2 on dynamic autoregulation is slower than on 

CBFV.  

I. INTRODUCTION 

Cerebral autoregulation (CA) is defined as a mechanism 
that maintains relatively constant cerebral blood flow despite 
dynamic changes of blood pressure [1]. In short, it is a 
pressure-to-flow mechanism, although changes in cerebral 
blood flow can also be induced by other parameters, such as 
CO2, O2, or sympathetic activity. CO2 is known as a 
vasodilator that can change blood flow greatly in seconds, 
which means that the variation of CBFV is partially 
contributed by CO2 and partially by ABP during changes in 
arterial CO2. Thus, in order to calculate the phase dynamics, 
one of the main indicators of CA effectiveness, the partial 
variation of CBFV induced by CO2 needs to be removed. We 
therefore used a multivariate structure to model 
autoregulation as a multiple-input and single-output (MISO) 
system, where ABP and CO2 are the inputs and CBFV is the 
output [2]. Considering the time-varying properties of the 
MISO system during the course of vasodilation/constriction, 
we chose an RLS adaptive method to extract the partial 
CBFV with respect to time. The residue CBFV (rCBFV) and 
ABP can then be used to estimate the phase dynamics.  

In order to catch rapid phase dynamics of autoregulation, 
we chose Hilbert transform to calculate the instantaneous 
phase difference (PD) between the rCBFV and ABP. It is 
worth noting that the time and frequency resolution is not 
determined by the sampling rate of the signals, but the 
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band-pass filter applied to the signals prior to HT. In our case, 
PD at 0.1 Hz is of interest and the phase dynamics of 
autoregulation may change in a few seconds, which requires a 
band-pass filter with a good compromise of time and 
frequency resolution. Therefore, we proposed a Gaussian 
pulse filter (GF) modulated by a sinusoidal wave at 0.1 Hz, 
given that the GF is in a Gaussian shape and minimal spread 
in both time and frequency domain. 

After describing the main system identification techniques, 
a simulation test was performed to test the proposed methods 
under controlled conditions. Finally, we applied our main 
method, in comparison with alternatives, to the signals 
recorded from 27 healthy volunteers and showed the phase 
dynamics induced by step-wise changes of end-tidal CO2 
(ETCO2). 

II. METHOD 

A. Multivariate System 

Cerebral autoregulation is modeled as an MISO system, 
where ABP,    , and ETCO2,     , are the inputs and CBFV, 
    , is the output [2], 
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where  denotes samples at 1 Hz sampling rate, and       
and      are the partial CBFV correlated with ABP and 
ETCO2, respectively.        and        are the causal FIR 

filter impulse responses, and    and    denote the orders of 
the filters, which are 6th and 20th, respectively [2][3]. 

B. RLS Method 

Based on (1), we extended our previous univariate RLS 

adaptive filter (UAF) to a multivariate RLS adaptive filter 

(MAF) and updated the filter impulse responses from the 

signals sample by sample. We first estimated the Kalman gain 

vectors,       and      , 
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where        
  is the inverse autocorrelation matrix of the 

input signals. We then estimated the error at the  -th sample 

by, 

                                     (4) 
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The weight vector      is updated by, 
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We then updated the      adaptively for each input, 

                                   (13) 

To this end, the rCBFV with the partial CBFV correlated 

with ETCO2,      , removed can be estimated sample by 

sample as, 

               
                          (14) 

D. Instantaneous Phase Difference using Hilbert Transform 

The instantaneous phase difference (PD) can then be 

estimated between the analytic signals of ABP and the residue 

CBFV, which are defined as: 

             ̃                          (15) 
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where       and   
    are the analytic signals, respectively. 

 ̃    and   ̃
 
    are the Hilbert transform (HT) of the real 

signals,       and      .   
As shown above, the analytic signals can also be denoted 

by its instantaneous amplitude      and instantaneous phase 

    . The instantaneous PD can then be calculated as: 
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E. Gaussian-modulated Sinusoidal Pulse Filter (GSPF) 

Though the calculation of the instantaneous amplitude 

and phase using HT may apply to an arbitrary broad-band 

signal, the physical meaning of these instantaneous 

parameters becomes clear only when the signal is within a 

narrow band. Therefore, band pass filtering is generally 

required prior to HT to extract the signal component of 

interest. The temporal and frequency resolution of the 

instantaneous phase is determined by the band-pass filter [4]. 

Given that Gaussian shape is of minimal spread in both 

time and frequency domain, we defined a 

Gaussian-modulated sinusoidal pulse filter,     , as: 
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where   is the centre frequency and     is the bandwidth 

parameter, respectively. We set the centre frequency,   , at 

0.1 Hz, as this is the most relevant frequency to show the 

phase dynamics of cerebral autoregulation [3]. The 

bandwidth parameter was chosen to be        which was 

determined by comparing the GSPF with a series of 

Butterworth band-pass filters at different bandwidths. 

F. Simulation Test and Real Data 

In order to show the performance of the proposed method 
in an ideal condition, a simulation test was designed to 
compare four different methods of estimating time-varying 
parameters. After the simulation test, the proposed method 
was then applied to a set of real data. 

1) Simulation Test 

Step changes of PD were simulated by filtering a 

sinusoidal wave at 0.1 Hz with Tiecks filters in a sequence of 

autoregulation index (ARI) at 1, 7, and, 3, where the 

sinusoidal wave were considered as the simulated ABP, 

          (        ), and the filtered signals were the 

simulated partial CBFV,   
    , that is correlated to ABP. The 

simulated ETCO2,           (         ), was denoted 

by another sinusoidal wave at 0.05 Hz and a sequence of 

phase changes (changes at the same time as the ARI) at    , 

 , and     used as the simulated,  
        (        

   )    
 

 
   

 

 
. The total simulated CBFV is therefore 

equal to         
       

    . 
We then used the proposed techniques to track the step 

changes of phase dynamics. 

 GSPF-HT and MAF: Using MAF, we 
estimated   

     by (14) and then calculated the 
instantaneous PD between the estimated rCBFV and 
the simulated       using GSPF and HT (GSPF-HT). 

 GSPF-HT and UAF: Instead of using MAF, 
we applied only an univariate adaptive filter to 
estimate   

    . In this case, there is only one input, 
     , and one output,      , of the system, which 
means        in Equation (2)-(14). We then 

estimated instantaneous phase using GSPF-HT from 
this pair of estimated   

     and simulated      . 

 GSPF-HT: For a comparison, we applied the 
GSPF-HT techniques directly to      and       to 
show how the CBFV component from estimated 
ETCO2 affects the estimated PD.  

2) Real Data 

Twenty-seven subjects (25-55 years old) were enrolled 

for continuous recording of ABP, CBFV and ETCO2 (2 

recordings for each, 54 in total) at Leicester Royal Infirmary, 

UK. The study received local ethical committee approval and 

all subjects gave written informed consent. They were free 

from known cerebrovascular or cardiovascular diseases. With 
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subjects in the supine position, ABP was recorded 

non-invasively using the arterial unloading techniques 

(Finometer, Ohmeda). Freehand transcranial Doppler 

(Companion III, Viasys Healthcare) identification of the both 

middle cerebral arteries (MCA) was performed using 2MHz 

probe, which was then held in place by a custom built head 

frame. A face mask was connected to a CO2 delivery system, 

and by a line to a capnograph (Datex, Normocap 200) to 

measure end-tidal CO2 (ETCO2) levels. 

Step changes of ETCO2 were induced by inhaling a 5% 

CO2/air mixture from the face mask, resulting in 

normocapnia (NC), hypercapnia (HC) and then back to 

normocapnia (NC) (5 minutes for each session). A low-pass 

filter with cutoff frequency at 0.5 Hz was applied to obtain 

beat-to-beat changes of ABP and CBFV, which were then 

down-sampled to 1 Hz. All signals were then filtered by a 

high-pass filter at 0.01 Hz cutoff frequency to remove the low 

frequency trends caused by CO2 step changes. 

 The same methods described in the simulation test were 

applied to the data for tracking the phase dynamics. In order 

to compare with the method that we previous proposed for 

estimating time-varying phase dynamics, we also used an 

adaptive filter to calculate the phase difference to compare the 

tracking speed [3]. As the time of CO2 onset and offset was 

marked during data recording, the estimated PD from each 

recording was aligned by the starting points of CO2 changes 

to show the phase dynamics induced by CO2 reactivity. 

III. RESULT 

In Fig. 1, it shows that the proposed method (solid line) 

can track the simulated phase dynamics more closely to the 

ground truth (dashed line) than the other methods (dashdot 

and dotted lines). Although we simulated ETCO2 at a 

different frequency (0.05 Hz) from the ABP (0.1 Hz), without 

removing the effect of ETCO2 by the adaptive filter, evident 

ripples can be observed in the estimated instantaneous PD 

using GSPF-HT alone. However, though effect of ETCO2 is 

suppressed when we used UAF and GSPF-HT, we found the 

result is biased from the ground truth. The root-square-error 

(RSE) between the simulated   
    and estimated   

     by 

MAF and UAF is shown in Fig. 2. 

 
Figure 1. Results of tracking step changes of phase dynamics. 1) Solid line is 

thePD estimated by  GSPF-HT and MAF; 2) Dashdot line is estimated by 

GSPF-HT and UAF; 3) Dotted line is esitmated by GSPF-HT; 4)Dashed line 

is the ground truth calculated from Tiecks’ model (ARI = 1, 7 , and 3) 

 

Figure 2. Error analysis of the simulation. The RSE between the simulated 
  

    and estimated   
    by MAF (dark line) and UAF (gray line). 

It shows that using MAF the error increases and then drops 
back to zero when sudden phase change was simulated. 
However, in the case of UAF, the error does not converge to 
zero (see explanation in the Discussion), resulting in biased 
estimate (gray line) of the phase difference in Fig. 1. 

Fig. 3-4 show the phase dynamics estimated from the 
recorded signals. Fifty-four estimated continuous phase 
dynamics were aligned by CO2 onset and offset (shown by the 
gaps from the 150th second in Fig. 3-4), which separates 
normocapnia and hypercapnia. In order to rule out the outliers, 
we plotted out the median values of the PD calculated across 
the 54 recordings. It is evident that, without removing the 
effect of ETCO2, the instantaneous PD (dashed lines) changes 
dramatically when subjects started and stopped to inhale air 
mixed with 5% CO2.  

 

Figure 3.   Population median phase dynamics induced by inhaling air mixed 

with 5% CO2. 1) Solid line is the PD estimated by  GSPF-HT and MAF; 

2)Dashed line is esitmated by GSPF-HT; 3) Dotted line is estimated by an 
adaptive filter proposed in [3].The gap denotes the time of CO2 onset. 

The sudden changes of phase dynamics during the step-wise 

CO2 changes can be reduced if we applied MAF (solid lines) 

(we did not use UAF, as bias was introduced) to remove the 

partial CBFV introduced by ETCO2 or used an adaptive filter 
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to estimate the phase dynamics (dotted lines) in a relatively 

slower tracking speed [3].   

Table I-II suggests that all these methods can also be used 

to grade autoregulation when subjects are in different CO2 

levels. 

TABLE I.  PHASE DIFFERENCE ALIGNED BY CO2 ONSET 

 Normocapnia Hypercapnia 

Method 1 2 3 1 2 3 

Median±std 
(degree) 

41±18 43±17 43±17 35*±15 30*±12 36*±13 

Method 1: GSPF-HT and MAF 

Method 2: GSPF-HT 

Method 3: Adaptive filter proposed in [3] 

*: p<0.01 t-test for comparing PD in normocapnia and hypercapnia 

 

Figure 4. Population medianphase dynamics induced by inhaling ambient air 

from 5% CO2 mixture. Llines are derived by the same methods in Fig 1. The 

gap denotes the time of CO2 offset. 

TABLE II.  PHASE DIFFERENCE ALIGNED BY CO2 OFFSET 

 Hypercapnia Normocapnia 

Method 1 2 3 1 2 3 

Median±std 

(degree) 
21±12 21±12 26±12 35*±16 33*±14 31*±13 

Same footnotes as in TABLE I  

IV. DISCUSSION 

In this work, we proposed a novel method that can track 

rapid phase dynamics of cerebral autoregulation. We used 

MAF to remove the dynamic effect of ETCO2 and then 

calculated instantaneous phase dynamics of cerebral 

autoregulation using GSPF-HT from the residue CBFV and 

ABP. 

The simulation results show that this method can track 

sudden changes of phase difference and suppress the effect 

from the simulated CO2 in neighbouring frequency bands 

(0.05 Hz). Although this effect can also be reduced by UAF, 

biased estimates were observed (Fig. 1). As the simulation is 

designed specifically for an MISO system, UAF cannot 

explain all the variation in the simulated CBFV and hence has 

to compromise in its estimate of the impulse response to 

minimize the overall error. It is also understandable that we 

observed ripples (dotted line in Fig. 1) even when a dedicated 

band-pass filter (GSPF) was applied, as signal components 

from neighbor frequency bands can leak into the filtered 

signals if time resolution is demanded.  

When the proposed method was applied to the real data, it 

is evident that the effect of ETCO2 to the phase dynamics is 

reduced in Fig. 3-4. During CO2 onset and offset, the phase 

difference drops down (approx. 35 degree) and jumps up 

(approx. 20 degree), if the partial CBFV induced by ETCO2 

is not removed. The results in Fig. 3-4 also indicate that the 

effect of CO2 on CBFV is relatively fast, whilst the 

pressure-to-flow dynamics changes gradually afterwards. 

Before and after the intake of the mixed air, the phase 

dynamics estimated by different method are similar, implying 

the partial CBFV from CO2 is weak during these periods and 

the pressure-to-flow dynamics is dominant.  

We also compared the current method with the adaptive 

method that we previously proposed for assessing 

time-varying phase dynamics. It shows that the sudden phase 

is reduced by the adaptive filter. However, the rapid dynamics 

might have been lost (evident in Fig 4.), as the previous 

method updates the estimate in a relatively slow speed.  

V. CONCLUSION 

We provided a novel method to study the underlying 

rapid pressure-to-flow dynamics induced by multiple cerebral 

hemodynamic changes (CO2 reactivity, in this case). This 

method reveals that cerebral autoregulation may not change 

as quickly as cerebral blood flow when cerebral artery 

dilated/constricted by increasing/decreasing ETCO2.  
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