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Abstract— This paper describes a simulation study which
aims at optimizing the therapy for the control of Chronic
Myeloid Leukemia according to the following objectives: the
reduction of the administered drug and vaccine amounts, the
establishment of a auto-immune response and the long-term
control of disease without reducing the effective of therapy with
respect to the full treatment. A therapy optimization method
is developed defining and solving a Model Predictive Control
algorithm, preceded by an accurate Initial Guess search based
on Monte-Carlo like approach. Simulation results show that
the suggested procedure achieves the proposed goals.

I. INTRODUCTION

A. Chronic Myeloid Leukemia: disease and treatments

Chronic Myeloid Leukemia (CML) is a slowly growing
cancer characterized by the overproduction of white blood
cells (WBC) within the bone marrow and their accumulation
in the blood [1], [2]. In particular, CML is characterized
by the overproduction of immature blood-forming cells, the
myeloid precursors, or myeloid blasts [3]. The evolution of
CML is grouped into three phases:

1) Chronic, which can last for months or years if treated
with drugs. During this phase, patients may have few
or no symptoms.

2) Accelerated, during which the myeloid precursors
grow more quickly and patients show several symp-
toms. Without drug treatment this phase lasts 1-6
months before progressing into terminal phase.

3) Blast crisis, the last phase characterized by rapid
progression and short survival.

The standard treatment for CML is the drug therapy [4],
and the most used drug is Imatinib. Imatinib is a tyrosine
kinase inhibitor (TKI), so it induces the bone marrow to
stop or reduce the overproduction of white blood cells.
Imatinib reduces the number of leukemic cells, but it is
not able to fully eradicate the cancerous cells from body.
These residual cells are a source of relapse, especially if drug
therapy is stopped. Unfortunately, the TKI drugs have several
side effects. Recently, some preliminary clinical studies [5]
showed that a vaccination therapy may be able to reduce
or eliminate the last residual cancerous cells in some CML
patients under Imatinib treatment. The researchers say that,
probably, the vaccine may stimulate an immune system
attack against the cancerous cells.
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B. CML treatments modeling

In the last years, several mathematical models have been
developed to describe the dynamic between CML and drugs
[6], [7], [8], [9]. In our work we use the model developed
by [9] that is based on [6]. In [6] it was proposed to model
the differentiation of leukemia cells in four stage: stem cells
(SC), progenitor cells (PC), differentiated cells (DC) and
terminally differentiated cells (TC). In their model, during
Imatinib therapy, the leukemic stem cells are not depleted
by significant amounts, because they are not affected by
Imatinib action. In this way leukemic stem cells continue
growing, so leukemia inevitably persists. The model devel-
oped in [9] combines the Imatinib action with the immune
system stimulation in order to control the CML progression,
so it includes anti-leukemia (T-cells) immune response. The
authors hypothesize an in-vivo stimulation of anti-leukemia
immune response by irradiated autologous leukemia cells or
lysates (taken from blood from the patient before Imatinib
therapy). This procedure is referred to as vaccination. This
model is formulated as a system of delayed differential
equations, compactly represented as:

χ̇(t) = f(χ(t), υ(t), χ(t− nτ)), ψ = h(χ) (1)

where χ = [y0 y1 y2 y3 z0 z1 z2 z3 T V ]
T is the state vec-

tor, υ = [I sV ]
T is the input vector, ψ = [C T ]

T is the
output vector. In particular, the states y0, y1, y2, and y3
indicate the concentrations of SC, PC, DC and TC, whereas
z0, z1, z2, and z3 indicate the same cell concentrations with
resistance mutations to Imatinib. The terms T , C and V
denote the concentrations of anti-leukemia T-cells, leukemia
cells and inactivated leukemia cells, respectively. The term
I represents the normalized Imatinib input and the term
sV is the supply rate of inactivated leukemia cells. The
model equations, the values of each parameters and the initial
conditions are available in detail in [9] and are not described
in this paper for the sake of brevity.

C. Model Predictive Control

Model Predictive Control (MPC) denotes a class of control
algorithms in which a dynamic model of the system to be
controlled is used to forecast the system evolution under a
planned control trajectory. Based on this predictive model,
an optimal control trajectory is computed by minimizing
an objective function, which usually measures the control
effort and the deviation of the system variables from desired
targets, while respecting constraints on the system variables
and control inputs.
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MPC strategies were initially developed in the late ’70s to
meet the optimization needs of large-scale process industries,
but they have now become attractive control algorithms in
many other contexts, including biomedical applications and
drug therapy optimization (see e.g. [10], [11], [12], [13] and
references therein).

II. METHOD

A. Therapeutic Objectives

Based on the results of the CML model described in [9]
in terms of drug and vaccination usage, the therapy objective
has been defined in terms of minimization of 3 quantities: the
C cells concentration, the total vaccination dosage and the
total amount of Imatinib. The reduction of the vaccination
dosage is desirable since the injection of deactivated cancer
cells represents a risk factor for the patient. The minimization
of the Imatinib has two main objectives: i) to avoid mutation
process involving drug resistance in sub-populations of C
cells; ii) to modulate the drug amount in order to reach the
optimal load zone (OLZ) for the C cells population. Using
a scheduled modulation of the Imatinib, the proliferation of
C cells can be hold within an interval (OLZ) that enables
the maximum T cells reproduction by vaccination. Within
the OLZ, it is possible to reach the same (or better) immune
response using a less vaccination dosage.

B. Problem Formulation

As briefly recalled, the predictive control algorithm re-
quires the definition of a suitable cost function (to be
minimized) and of a set of constraints (to be fulfilled). On the
clinical side, the cost function minimization means to drive
the evolution of the pathology into the chronic state. In our
formulation, the cost function was defined into a decision
space identified by the control variable vector θ:

θ =
[
ts te ν ζ

]
(2)

where ts and te are the day of the first and the last
vaccination respectively, ν is the total dosage of the vaccine.
The variable ζ has been defined as: ζ =

[
ζ1 ζ2 · · · ζn

]
,

in which each ζi represents the i-th drug modulation (i.e.,
reduction) in the i-th period between the (i− 1)-th and the
i-th vaccination. Note that ζi = 0 means maximal drug use
and ζi = 1 means no drug use. The cost function is:

J = min
θ

[
ν + α1 log

(
C(t�)

)
+ α2‖η(·)‖

+ α3‖1− ζ‖+ α5‖ϕ(·)‖+ α6‖ϕ(·)‖
]

(3)

the set of constraints is:

ts ≥ tmin te ≤ tmax ts ≤ te (4a)
νmin ≤ ν ≤ νmax (4b)

log(T ) ≥ log(Tmin)− η(t) (4c)
η(t) ≥ 0 (4d)

log(Cmin)− ϕ(t) ≤ log
(
C(t)

) ≤ log(Cmax) + ϕ(t) (4e)

ϕ(t) ≥ 0 ϕ(t) ≥ 0 (4f)

0 ≤ ζi ≤ 1 i = 1, . . . , n (4g)

in which t0 and t� are starting and ending times of the
predictive window, tmin and tmax represent the minimum
and maximum delay needed in starting the therapy to reach
a considerable immune response. The term C(t�) is the final
concentration of leukemia cells, the penalty term ‖1− ζ‖ =∑n

i=1 |1−ζi| is used to “encourage” drug modulation, Tmin is
the lowest possible value for the anti-leukemia concentration,
Cmax and Cmin are the higher and lower bound of the OLZ
defined around the optimal value 1/cT (cT is a subject-
dependent parameter that regulates the T cell interaction with
a cancer cell [9]), explicitly:

Cmax =
1

cT
+ ξ; Cmin =

1

cT
− ξ (5a)

The terms ϕ(t), ϕ(t) are slack variables used to represent
violations of the OLZ boundaries. The term η(t) is the
violation of the minimum concentration bound of T-cells re-
quired as safe specific during the whole therapy. Their norms
appearing in the cost function are computed as follows:

‖η(·)‖ =

∫ t�

t0

η(t)dt

=

∫ t�

t0

max
[
0, log

(
Tmin

)− log
(
T (t)

)]
dt (6a)

‖ϕ(·)‖ =

∫ te+Δt

ts

ϕ(t)dt

=

∫ te+Δt

ts

max [0, C(t)− Cmax] dt (6b)

‖ϕ(·)‖ =

∫ te+Δt

ts

ϕ(t)dt

=

∫ te+Δt

ts

max [0, Cmin − C(t)] dt (6c)

Notice that the integration are structured in such a way that
they are non-zero only if their related constraints are violated.
Note that windows of integration in (6b) and (6c) are limited
onto period between the first scheduled vaccination and the
last one plus the shifting term Δt in order to consider also
the effect of the last estimated drug amounts. The Imatinib
modulation has allowed only during vaccination, in order to
avoid periods in which no controls are active.

C. Initial Guess Search

Due to the complexity of the cost function expressed in (3),
an Initial Guess (IG) algorithm has been devised to provide
a good initial set of values for parameters. The IG algorithm
uses a Monte-Carlo like approach. The cost function value
is evaluated for different values of the decision parameters.
In particular, the IG search can be described in 3 steps: 1)
definition of a finite set of values for the each parameter; 2)
evaluation of cost functions for each combination of values;
3) setting as IG the parameters with the lower cost function
value. The IG procedure will return a sub-optimal therapy
vector (θIGr ), not including the Imatinib modulation, consist-
ing of a therapy timing (tIGs , tIGe ), scheduler of vaccination
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(providing total dosage (νIG), number of vaccinations NvIG

and inter-vaccination time f IG):

θIGr =
[
tIGs tIGe νIG NvIG f IG

]
. (7)

D. Closed-loop Implementation

The first issue to address in a closed-loop implemen-
tation is represented by the mismatch between the real
process evolution and the predicted one. When modeling real
processes, several sources of error (ideal model equations,
parameter identification, experimental measurement errors,
etc.) are often introduced. In order to cope with all sources of
mismatch, it is customary in MPC design to use an additive
disturbance term, estimated at each measurement time. Such
disturbance is used to modify future nominal model predic-
tions. Assuming that measurements are available regularly
every Δ days, let ψj be the output vector at time tj = Δj,
with j = 1, 2, . . .:

ψj =
[
C(tj) T (tj)

]T
(8)

At each time tj an output disturbance is estimated as:

dj = ψj − h(χj) (9)

Then, the prediction for future times t ≥ tj will be performed
using the corrected model:

χ̇(t) = f(χ(t), υ(t), χ(t− nτ)), ψ̂ = h(χ) + dj (10)

At each measurement time, the corrective term dj will be
then estimated and used to improve the model accuracy. In
principle, we could use a more general (state and output)
disturbance observer, see e.g. [14], [15], [16], but this is
omitted because it would add technicalities not justified by
the scope of this paper. To reduce the model and real system
mismatch, the frequency of measurements (1/Δ) has been
increased during vaccination therapies, in which the system
dynamic is more sensible to measure uncertainty. As can
be seen from the Fig.1, at each step the corrective term
is estimated from the measurements (of the real process)
and the prediction of system evolution evaluated during
optimization. At the next step, the corrective term is used
at the optimization level to improve the model accuracy, as
above mentioned.

A dedicated code was written in MATLAB (version
2010a) for the solution of the IG searching problem. For
MPC formulation, the MATLAB nonlinear constrained min-
imization function fmincon was used to find the solution of
(3) at each sampling time.

III. RESULTS AND DISCUSSION

The combined MPC-IG formulation was applied to 3
different simulated patients (named P1, P2 and P3), by using
the parameters reported in [9]. For each patient, we set
1500 days as total time of simulation; to be compatible with
clinical practice, we supposed that the time interval between
each measures (Δ) is 7 days (between topts and topte ) and
30 days (during non treatment period), and that the Imatinib
dosage can switch each 30 days. To simulate the mismatch

Fig. 1. Whole implementation of MPC and IG stages

between the real process and the modeled one, we use the
model parameters of P2 as the internal model for the MPC
formulation of P1 and P3. In table I the results of controlled
variables at the ending time of predictive window (C(t�)
and T (t�)), drug reduction with respect to the uncontrolled
protocol and θopt (except for drug vector) of closed-loop
simulation, are reported for each patient after both IG and
optimization stages. Notice that the best compromise (high
level of T cells but low values of vaccination, Imatinib
dosage and C cells) is related to P2. The evolutions of both

TABLE I
RESULTS OF SIMULATION FOR EACH PATIENT (P1, P2 AND P3).

Patient P1 P2 P3

topts [days] 350 316 350

topte [days] 602 480 602
Nvopt 10 10 10
fopt[days] 5 5 5
νopt [k/μl] 0.41 < 0.01 5

log(C(t�)) −15.7 < −20 < −20
T (t�) [k/μl] 0.0165 0.0165 0.0082
drug reduction [%] −11.7 −7.6 −16.8

controlled variable and drug modulation are shown in figure
2. In figure 2, only the time widows focused over topts and
topte are reported during which the drug is modulated. From
the data of figure 2, it is clear that the best evolution of the
CML are obtained for the patient P2 with low noise level
(1%), in fact the amount of drug usage is the lower with
respect to the other simulations and, at the same time, the T
cell population reaches high level and the C cell amount is
drastically reduced at the end of simulation. This goal for P2
is due to the fact that the MPC algorithm is able to drive and
keep the C cell population into the OLZ when C cells are
in higher concentration. In this way, lower amounts of drug
and vaccination are required to drive the Leukemia into the
chronic state. The performances of the control strategy get
worse with the increase of noise level (from 1% to 10%),
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Fig. 2. Closed-loop evaluation for 3 simulated patients (P1,P2 and P3)

but the used amount of drug is still reduced compared to the
standard pharmacological therapy. On average, the patients
P1 and P3 are lower overall performances then P2, but it is
still possible to improve the therapeutic protocols for each
patient with respect to the standard ones.

IV. CONCLUSIONS

In this work we have devised a Model Predictive Control
strategy, preceded by a initial guess (IG) searching, to an
ODE model describing the interaction between the drug
and vaccination administrations and the Chronic Myeloid
Leukemia. We showed how this approach is well suited for
this kind of application, since the simulations demonstrated
that the MPC-IG combined strategy is able to optimize the
standard therapeutic approaches by minimizing the drug and
vaccination amounts but, at the same time, keeping under
control the disease.
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