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Abstract— This paper considers the problem of online cal-
ibration and recalibration of continuous glucose monitoring
devices. A parametric relation between interstitial and blood
glucose is investigated and a constructive algorithm to adap-
tively estimate the parameters within this relation is proposed.
The algorithm explicitly considers measurement uncertainty of
the device used to collect the calibration measurements and
enables automatic detection of measurements which are not
suitable to be used for calibration. The method was assessed
on clinical data from 17 diabetic patients and the improvements
with respect to the current state of the art is shown.

I. INTRODUCTION

In the effective treatment of diabetes it is essential to

measure the blood glucose concentration (BG) frequently

throughout the day by self monitoring of BG (SMBG).

Traditionally, this involves extraction of a small quantity of

capillary blood from a finger which is applied on a disposable

test strip. In contrast, continuous glucose monitoring (CGM)

devices provide a continuous estimation of the current BG

based on measurements in the interstitial fluid of subcuta-

neous (SC) tissues. However, the accuracy of CGM systems

is not comparable with SMBG [1], and so far no CGM sensor

was approved as a replacement of traditional monitoring

devices [2]. In the particular situations of insulin dosage

decision or administration of diabetes medication, traditional

BG measurements must be performed [2]. Measuring BG

is currently considered as a major limiting factor in the

development of automated diabetes control systems [3].

Most of the available CGM devices measure an electrical

current in the SC tissues proportional to the interstitial

glucose concentration (IG), exploiting the glucose-oxidase

enzyme reaction. To relate this measurement to the desired

BG a calibration is necessary which is usually accomplished

through an affine relation of the form x = ay + b [4] where

x is the BG obtained through SMBG, y is the measured

current and a, b are the calibration constants. Care has to

be taken in choosing appropriate calibration measurements
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[5]: it is recommended to calibrate at times when the signals

are mostly in a static rather than dynamic regime. Once the

device is calibrated the calibration will get lost over time

mainly because of a process called Biofouling [6] which, as

protein molecules stick to the sensor element, continuously

alters the diffusion process. Therefore, sensor needles need

to be entirely replaced every 5-7 days and recalibration

measurements are required every 12-24 hours [7].

The state of the art calibration technique described above

does not take into account IG to BG dynamics well known

from physiology, e.g. the time-lag between the two compart-

ments of approximately 4-10 minutes [8]. In [9], a linear first

order filter is assumed between the two compartments and the

time-constant τ within this relation estimated continuously

with the aid of an extended Kalman filter. A recently pre-

sented method [7] also proposes a first order filter model with

an impulse response of the form 1/τ exp(−t/τ) between the

two compartments where τ is an a-priori fixed time constant.

Superiority compared to state of the art methods was shown

in simulation and on real data, however, the method might

be further improved if τ could be adapted online.

Here, we propose such a model based adaptive method

capable of solving the problem of calibration and online

recalibration by assuming a pure time delay between the IG

and BG compartments. The parameters are estimated online

by solving convex optimization problems. The algorithm is

of moderate computational complexity and could be imple-

mented in a signal post-processing unit on CGM devices.

II. PROBLEM STATEMENT

We address the problem of calibration of the signal pro-

duced by a sensor installed on a patient, which provides

a continuous measurement signal yint(·) related to the IG.

Based on past results present in the literature [3], [4], [10],

the raw measurement signal yint is a function of the actual

glucose concentration xint in the interstitial fluid and can be

described with the affine function:

xint(t) = k1yint(t) + k0, t ∈ R, (1)

where k0, k1 are the unknown calibration constants. In the

sequel, we will denote yint as the continuous measurements.

The typical approach which is followed in the literature [4] to

estimate the pair k0, k1 is to rely on high accuracy sampled

measurements yblood of the BG — measured directly using

venous blood samples in clinical applications or by patients

SMBG — which is strongly related to the IG [11], [12]. In

particular, the current methods for measurement of BG are
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min
T∈[0,Tmax]

ǫ(T ) , min
k0,k1

∑

i∈I(t)

ηi, subject to : ηi ≥ 0, ∀i ∈ I, (6a)

[

∆(yblood(ti))
2 + ηiψ (t̄− ti) k0 + k1yint(ti + T )− yblood(ti)
⋆ 1

]

≥ 0, ∀i ∈ I (6b)

characterized by a reasonably small confidence range and

can be characterized by the following relation:

xblood(ti) ∈ yblood(ti) + B (∆(yblood(ti))) , i ∈ Z, (2)

where ti denote the times when the patient performs the

measurement, xblood is the actual (unknown) BG, B(v) the

interval [−v, v] and ∆(·) is a function characterizing the

confidence level of the measurement. One typical charac-

terization of ∆(·) is a linear strictly increasing function (the

smaller the measured value, the higher the confidence of the

measurement is). In the sequel, we will denote yblood as high

precision or sampled measurements.

Here, we will investigate the calibration problem by estab-

lishing a parametric relation between the BG and IG and, in

addition to estimating the calibration constants k0, k1 in (1),

we will also use yint(t), t ∈ R, yblood(ti), i ∈ Z, to estimate

the parameters within this relation. We focus on relating the

two concentrations by a pure time delay, resembling the fact

[8] that upon a sudden increase of the BG, the same increase

is detected in the IG after a suitable delay:

x̂blood(t) = xint(t+ T ). (3)

where T the delay to be estimated. Using (II), the BG can

be estimated from the knowledge of the IG.

In the rest of the paper we will use convex optimization

tools to address the following problem.

Problem 1: Given the continuous and high precision mea-

surements in (1) and (2), respectively, and the linear model

(II), for each time t ∈ R, define the set of indices

I(t) , {i : ti ≤ t}, (4)

denote t̄ , max
j∈I

tj and determine a solution to the following

optimization problem

(k∗0(t), k
∗
1(t), T

∗(t)) = argmin
k0,k1,T

∑

i∈I(t)

ηi (5)

subject to : (II), ηi ≥ 0, i ∈ I(t)

|x̂blood(ti)− yblood(ti)|
2 ≤ ∆(yblood(ti))

2

+ ηiψ (t̄− ti) , i ∈ I(t)

where ψ(·) is a nondecreasing positive function representing

a desired forgetting factor for the parameter estimates and ηi
are the optimization variables.

Remark 1: Note that a zero value of the cost,
∑

i∈I(i) ηi,
implies that all predicted and actual measurements are within

the tolerance of the sampled measurements.

Note also that in problem (5) the optimization is carried

out at time t by only taking into account the past high

precision measurements (this is embedded in the definition

of I(t)), therefore the optimization can be carried out in

a causal way although, an additional delay of at least T
minutes is required, so that the signal yint(t+T ) is available.

III. RECALIBRATION STRATEGY

Proposition 1: Given t ∈ R, consider the index set (4).

Assume that for some Tmax > 0, the optimization problem

(6) at the top of the page where ⋆ denotes a symmetric

entry has a unique global optimum. Then the optimal values

(T ∗, k∗0 , k
∗
1) solve Problem 1 restricted to T ∈ [0, Tmax].

Proof: Using (3), the last constraint in (5) becomes

|k0 + k1yint(ti + T )−yblood(ti)|
2

≤ ∆(yblood(ti))
2 + ηiψ(t̄− ti)

Using a Schur complement [13] this is equivalent to (6b).

Note that the inner optimization problem in (6) is a set

of linear matrix inequalities in the unknown variables ηi,
i ∈ I and k0, k1, which can be efficiently solved using

standard tools [14]. Since the case studies that we will

address are characterized by a device providing a sequence

of values yint(tk), tk = kTs, ∀k ∈ Z, we illustrate in the

following procedure a sensor calibration strategy exploiting

Proposition 1 which addresses this special case.

Procedure 1:

Step 1. Fix a forgetting function ψ(·) and the maximum

expected delay Tmax. Fix (k∗0 , k
∗
1 , T

∗) = (0, 0, 0).
Step 2. Wait for the next high precision measurement

yblood(thp). Compute I(thp). Wait for the next continuous

measurement yint(t). Initialize T = t − thp and compute

the optimal value ǫ(T ) of the inner convex optimization

problem in (6). Set the initial and optimal values ǫ0 =
ǫ∗ = ǫ(T ). Initialize the state ǫ = ǫ0.

Step 3. Wait for the next continuous measurement and, us-

ing the next state T+ = t− thp, compute the optimal value

ǫ+ , ǫ(T+) of the inner convex optimization problem in

(6) and denote by (k0, k1) the optimal parameters.

Step 4. If (ǫ+ − ǫ)(ǫ+ − ǫ∗) ≤ 0 then report an error and

go back to step 2: the function ǫ(T ) is not quasi-convex in

[0, Tmax]. Otherwise goto the next step.

Step 5. Shift forward ǫ = ǫ+ and T = T+. If ǫ ≤ ǫ∗, then

set ǫ∗ = ǫ and (k∗0 , k
∗
1 , T

∗) = (k0, k1, T ).
Step 6. If T ≤ Tmax and (ǫ − ǫ∗)(ǫ − ǫ0) ≤ 0, then goto

step 3. Otherwise compute e = sign((ǫ0 − ǫ∗)(ǫ − ǫ∗)).
If e = 0, report an error: the function does not have a

minimum in [0, Tmax]. If e > 0, then update the calibration

parameters with the optimal values (k∗0 , k
∗
1 , T

∗). Go to

step 2 to wait for the next high-precision measurement.

The rationale behind Procedure 1 is illustrated in Fig 1:

At time thp a new high precision measurement is entered in

the device. Then a sequence of optimizations are carried out

as yint(t), t ≥ thp become available. Then, with reference

to the top plot of Fig. 1, the sequence of optimal values

ǫ(tk − thp) is expected to decrease until the optimal delay
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Fig. 1. Illustration of Procedure 1: Expected shape of ǫ(T ), top panel;
two abnormalities detected at Step 6 of the procedure, bottom panel.

T ∗, is reached (this is marked by an ”⋆”). Subsequently, it

is expected to increase and the algorithm terminates when

the current value of ǫ is different from the current minimum

ǫ∗ and larger than the initial value ǫ0 (this is marked by an

”×”), or the maximum time Tmax is elapsed.

In normal operating conditions, the expected curve is

“U”-shaped with a single minimum value T ∈ [0, Tmax].
Whenever the detected function does not comply with these

requirements, Procedure 1 terminates with a fault. In particu-

lar, if ǫ(T ) is monotonically nonincreasing or nondecreasing,

then the check at Step 6 results in e = 0 and the procedure

returns a faulty result. Moreover, if the function has one or

more local maxima in the interval, then the test at Step 4

will give a faulty result. If the procedure terminates with a

fault, the calibration constants simply remain unchanged and

the high precision measurement is disregarded.

IV. ASSESSMENT ON EXPERIMENTAL DATA

A. Description of the data set

In total, datasets coming from 17 patients consisting of 3

day in-hospital data collected at the Centre d’ Investigation

Clinique (CIC INSERM 1001) at Montpellier University

Hospital, France have been used in this work. The continu-

ous measurements have been collected with the FreeStyle

NavigatorTM(Abbott Diabetes Care, Alameda, CA). The

CGM data consists of a series of blood glucose concentra-

tions, estimated every minute from the mean signal related

to the glucose concentration in the SC interstitial fluid over

this time period and calibrated against SMBG performed on

a timely basis according to the manufacturer instructions.

Additionally, the raw electrical current signal measured in

the interstitial fluid and sampled on a one minute basis

is available. High precision measurements were taken with

a HemoCue β-glucose system (HemoCue AB, Angelholm,

Sweden) at times 10, 20, 30, 45, 60, 90 and 120 min after a

meal and at 2-hour intervals thereafter. Additionally, patients

used their personal strip-based BG meter individually. Those

measurements were typically performed before and some

hours after each meal.

We test the proposed method on all datasets, by using all

high-precision measurements until midnight of day 1 and

TABLE I

AVERAGE REL. ERRORS

Id
Day 3 Overall

Smp Delay Sens Fails Smp Delay Sens

1 27/6 7 21 6 97/45 7 18

2 29/6 12 12 8 102/46 11 11

3 27/6 9 15 18 104/45 9 10

4 30/5 13 12 2 105/43 10 13

5 29/6 7 9 7 100/47 7 10

6 36/6 15 26 11 111/49 11 20

7 27/7 5 16 4 98/48 8 15

8 27/7 7 10 5 108/54 9 14

9 7/3 10 13 6 62/39 7 11

11 28/6 7 14 2 98/44 6 12

15 27/6 10 15 15 97/45 7 9

16 3/4 10 15 3 64/41 8 12

18 30/9 13 16 2 111/55 13 17

19 28/6 5 14 4 99/46 5 12

20 26/7 11 16 10 96/49 9 16

28 20/6 9 23 7 71/36 7 20

30 21/6 8 10 15 77/38 17 19

Net 25/6 9 15 7 94/45 9 14

roughly six measurements in the following days day for the

calibration algorithm. To assess the quality of the calibration,

all high-precision measurements are considered.

B. Calibration results using the delay model

We follow Procedure 1 selecting Tmax = 30 min.,
the forgetting function ψ as the interpolation

of the following data points (time in hours):

(ψ(0), ψ(1), ψ(2), ψ(4), ψ(6), ψ(12), ψ(24), ψ(48)) =
(1, 3.5, 5, 6, 7, 9, 12, 20) and the tolerance level function

∆(v) = v/30. Moreover, we limit the cardinality of the

index set I in (4) to 10, as a larger number of measurements

essentially does not make any difference due to the effect

of the forgetting function. To assess the quality of the

proposed calibration strategy, we consider all high-precision

measurements and compare them to the expected glucose

concentration determined by evaluating the model (II) where

T corresponds to the estimated optimal parameter.

Table I lists, for each patient, the rel. errors and the number

of samples “Smp” used for assessment/calibration. Notice

that all samples are used for calibration on day 1, while only

a reduced number are used in the other days. The “Delay”

and “Sens” columns report on the error using our model

and the error of the CGM sensor output, respectively. The

section “Overall” reports the same statistics over all 3 days

and additionally indicating the number of failures reported

by Procedure 1 in “Fails”. Failures are generally expected

and correspond to possibly inconsistent measurements and

simply lead to leaving unchanged the calibration parameters.

From Table I it appears that the overall average error

arising from the proposed calibration technique is never

worse than the one obtained from the sensor output. In Fig. 2

and 3 we report the time histories for patient 19, which

corresponds to the best performance of Table I and patient

30, which corresponds to the worst performance of Table I.

In both figures, the upper plot reports the whole trace, where

the blue diamonds represent the whole set of high precision

measurements used for performance assessment, while the
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Fig. 2. Glucose levels for patient 19
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Fig. 3. Glucose levels for patient 30

red “X”s correspond to the ones used for calibration. The

high-precision samples are also interpolated using a “pchip”

fit, to provide a rough estimate of the actual BG. The black

dashed trace is the sensor output, while the green solid trace

is the calibrated signal arising from Procedure 1. In the lower

plot of the two figures we show a zoomed portion of data

corresponding to the last 700 minutes. The good fit provided

by the model for patient 19 can be appreciated in Fig. 2

where the green solid trace always remains very close to the

high-precision samples. As for patient 30 and the curves of

Fig. 3, an interesting feature is that most of the errors come

from inaccurate measurements for large values of the glucose

concentration, whereas the accuracy for small glucose levels

remains quite good.

V. CONCLUSIONS

A strategy for on-line calibration of raw measurement

signals from a CGM device was presented. It assumes an

affine dependence of the electrical current measured in the

interstitial fluid and the IG and a time-delay between the IG

and BG compartment. As opposed to available results, the

method can explicitly take into account a given measurement

uncertainty of the device used to collect the calibration mea-

surements. An efficient way to implement the procedure was

presented. As a by-product, information on the reliability of

the measurements may be obtained. This is a particularly ap-

pealing practical feature when considering that inappropriate

calibration measurements deteriorate the signal performance.

If the user provides such a measurement, it could be detected

as inappropriate and neglected in the recalibration process.

Validation of the algorithm on real measurement data coming

from 17 patients was performed. The results showed that

recalibrated signals are much closer to the actual BG even

in the case when only few calibration measurements are

performed and even when those measurements are performed

from the patients themselves with their own devices.

REFERENCES

[1] B. Kovatchev, L. Heinemann, S. Anderson, and W. Clarke, “Compari-
son of the numerical and clinical accuracy of four continuous glucose
monitors,” Diabetes Care, vol. 31, no. 6, pp. 1160–1164, 2008.

[2] I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham,
B. Childs, W. L. Clarke, and A. Peters, “Clinical application of emerg-
ing sensor technologies in diabetes management: Consensus guidelines
for continuous glucose monitoring (cgm),” Diabetes Technology &

Therapeutics, vol. 10, no. 4, pp. 232–244, 2008.
[3] C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao,

and B. P. Kovatchev, “Diabetes: Models, signals, and control,” IEEE

Reviews in Biomedical Engineering, vol. 2, pp. 54–96, 2009.
[4] V. Lodwig and L. Heinemann, “Continuous glucose monitoring with

glucose sensors: calibration and assessment criteria.” Diabetes Technol

Ther, vol. 5, pp. 572–86, 2003.
[5] B. A. Buckingham, C. Kollman, R. W. Beck, A. Kalajian, R. Fiallo-

Scharer, M. J. Tansey, L. A. Fox, D. M. Wilson, S. A. Weinzimer,
K. J. Ruedy, and W. V. Tamborlane, “Evaluation of factors affecting
cgms calibration,” Diabetes Technology & Therapeutics, vol. 8, no. 3,
pp. 318–325, 2006.

[6] U. Klueh, Z. Liu, B. Feldman, T. P. Henning, B. Cho, T. Ouyang,
and D. Kreutzer, “Metabolic biofouling of glucose sensors in vivo:
Role of tissue microhemorrhages,” Journal of Diabetes Science and

Technology, vol. 5, pp. 583–595, 2011.
[7] S. Guerra, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli,

“Enhancing the accuracy of subcutaneous glucose sensors: A real-
time deconvolution-based approach,” Biomedical Engineering, IEEE

Transactions on, vol. 59, no. 6, pp. 1658 –1669, june 2012.
[8] M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing

of changes in interstitial and venous blood glucose measured with a
continuous subcutaneous glucose sensor,” Diabetes, vol. 52, no. 11,
pp. 2790–2794, 2003.

[9] E. J. Knobbe and B. Buckingham, “The extended kalman filter for
continuous glucose monitoring,” Diabetes Technology & Therapeutics,
vol. 7, no. 1, pp. 15–27, 2005.

[10] E. F. Pfeiffer, C. Meyerhoff, F. Bischof, F. S. Keck, and W. Kerner, “On
line continuous monitoring of subcutaneous tissue glucose is feasible
by combining portable glucosensor with microdialysis,” Horm Metab

Res, vol. 25, pp. 121–124, 1993.
[11] E. Kulcu, J. A. Tamada, G. Reach, R. O. Potts, and M. J. Lesho,

“Physiological differences between interstitial glucose and blood glu-
cose measured in human subjects,” Diabetes Care, vol. 26, no. 8, pp.
2405–2419, August 2003.

[12] K. Rebrin, G. Steil, W. Van Antwerp, and J. Mastrototaro, “Subcuta-
neous glucose predicts plasma glucose independent of insulin: impli-
cations for continuous monitoring,” Am J of Physiology-Endocrinology

and Metabolism, vol. 277, no. 3, pp. E561–E571, Sep 1999.
[13] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994.

[14] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control

Toolbox. The MathWorks Inc., 1995.

3924


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

