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Abstract— Diabetes is a disease that involves alterations
at multiple biological levels, ranging from intracellular sig-
nalling to organ processes. Since glucose homeostasis is the
consequence of complex interactions that involve a number
of factors, the control of diabetes should be based on a
multilevel analysis. In this paper, a novel approach to design
of closed-loop glucose controllers based on multilevel models is
presented. A control scheme is proposed based on combining
a pharmacokinetic/pharmacodynamic model with an insulin
signal transduction model for type 1 diabetes mellitus patients.
Based on this, an insulin feedback control schemes is designed.
Two main advantages of explicitly utilizing information at the
intracellular level were obtained. First, significant reduction
of hypoglycaemic risk by reducing the undershoot in glucose
levels in response to added insulin. Second, robust performance
for inter-patient changes, demonstrated through application of
the multilevel control strategy to a well established in silico

population of diabetic patients.

I. INTRODUCTION

Type 1 diabetes mellitus is a multilevel disease char-

acterized by an inability to maintain glucose homeostasis,

i.e., regulate blood glucose levels within a normal range,

usually due to destruction of insulin producing cells in the

pancreas. Individuals with type 1 diabetes mellitus (T1DM)

have little or no endogenous insulin production, usually in

combination with insulin resistance. The goal of insulin

therapy is to achieve glucose homeostasis while avoiding hy-

perglycaemic and hypoglycaemic events, since poor glucose

control leads to short-term and long-term diseases. Patients

with T1DM must receive insulin, either in the form of

boluses or from continuous insulin infusion pumps. Artificial

pancreas replaces conventional therapy by an automated

insulin delivery system in the form of closed-loop glucose

control. The development of a closed-loop artificial pancreas,

which would use continuous glucose monitoring signals

and adjust the infusion rate of continuous subcutaneous

insulin infusion pumps, is a major research thrust by a

number of groups throughout the world. However, most

of the considered control approaches are based on a high-

level input-output, i.e., insulin/meal-glucose, analysis with-

out consideration of the multilevel interplay. These control

schemes use a pharmacokinetic/pharmacodynamic (PKPD)

point of view to describe the glucoregulatory system, e.g.,

the Cobelli-Dalla Man model [1]. Nevertheless, it is well

known that glucose homeostasis results from complex in-

teractions between the cellular insulin receptor sensitivity,

hormones, metabolic subsystems and organ processes [2].

Systems biology is aimed at analysing biological functions
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and processes from a systems perspective, i.e., with a

focus on the role of interactions in generating functions

and dynamic behaviors [3]. Mathematical modeling of the

system dynamics is central and deals with organ, intercellular

as well as intracellular network models. Multilevel models

describe systems and their interactions at different levels of

organization and abstraction. In a systems biology context,

the aim is not limited to derivation of models that describe

the time-varying concentrations of various substances and

their effect on the desired biological output, as is the case

with PKPD models. Rather, a key objective in systems

biology is to consider the interaction of variables at the

intracellular level and their interactions with higher level

processes and functions. One of the main areas of system

biology focus on modelling signal transduction processes

and how changes in these signalling networks affect the

transmission of information about extracellular conditions to

intracellular processes. Insulin signalling is a key factor in

the glucoregulatory process, because it transfers information

concerning the extracellular insulin concentration to the pro-

tein transcription processes within the cell nucleus, thereby

modifying the glucose uptake in the cells and stimulating

the translocation of the glucose transporter GLUT4 from

intracellular sites to the cell surfaces [4]. A physiologic in-

sulin delivery with insulin feedback, which employs a insulin

pharmacokinetic model, is developed in [5]. A multilevel

model combining an insulin signalling model [6] with a

PKPD model [1] was proposed in [7] and a model predictive

control based on that multimodel model was designed. The

results elucidated how knowledge of the multilevel nature of

diabetes diseases can be utilized to develop improved glucose

control in an artificial pancreas framework. Following the

same idea, this paper shows that even if a simple control

strategy is used, a significant improvement is achieved when

intracellular information is considered in the control design.

II. GLUCOSE CLOSED-LOOP SCHEME

In order to highlight the advantages of using multilevel in-

formation for glucose control, an insulin feedback controller

(IFB) was designed. The IFB controller is relatively simple,

consisting of a simple proportional-derivative controller com-

bined with an inner cascade loop to account for intracellular

dynamics. The main motivation behind the control scheme

is to illustrate the advantages of using multilevel information

without blurring it with the use of complex control schemes.

The insulin feedback controller is based on a combination

of an insulin pharmacokinetics model and an intracellular

model relating the insulin action to the glucose uptake. This

information is used to dynamically counteract the insulin
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infusion by the pump, acting as an inner negative insulin

feedback loop. The external feedback loop regulates the

glucose value provided by a continuous glucose monitor

system. The IFB controller is a model-based control scheme,

see Fig. 1, which includes a PK model G1(s) and an insulin

signal transduction model G2(s). The function of the inner

loop is essentially avoidance of temporal over-infusion of

insulin that would produce a hypoglycaemic event due to

the delay of the insulin action on the glucose measure at the

interstitial tissue. The function of the outer loop is to regulate

changes in glucose values produced by meals, disturbances

or errors in the actions of the inner loop using glucose

measures. IFB uses a proportional control to regulate the fast

dynamics of the inner loop, thereby supporting the regulation

of the main controlled output, glucose. For the external

feedback loop, any type of controller can in principle be

used. Here a simple proportional-derivative (PD) controller

will be considered for the reasons given above.
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Fig. 1. Insulin feedback control scheme. The controller used is
proportional-derivative and the inner negative feedback is based on an
insulin PK model plus an intracellular model.

1) PK model: The insulin pharmacokinetics (PK) model

describes the plasma insulin response to an exogenous insulin

input. The plasma insulin absorption of a bolus of insulin can

be modelled using a two-compartment subcutaneous insulin

model [8]. This model is based on the assumption that insulin

diffuses and is cleared from the body in proportion to its

concentration. It can be represented by the transfer function

G1(s) =
Ip(s)

u(s)
=

K1

(τ1s+ 1)(τ2s+ 1)
(1)

where τ1 and τ2 are time constants defining how fast the

insulin profile changes and K is the gain in the insulin

absorption process associated with the insulin clearance. Ip is

the estimation of is the insulin concentration at the interstitial

fluid and u is the insulin infusion. This model, which is

used to estimate the plasma insulin, has been validated in

a population of 8 patients [9]. The correlation coefficient

(R2) between the insulin measured and the estimated plasma-

insulin with this model was 0.730 ± 0.067 [9]. Data shows

that the kinetics observed is well described by the model.

Figure 2 shows the comparison of the model (1) with the

plasma insulin response of two experimental data sets. They

were taken from Mudaliar et al. [10] and Dallan Man et

al. [1]. The approximated model shows a good fit to the

experimental data for the purpose of controller design.

2) Insulin signalling model: The second model required

to design the IFB controller is the description of the insulin
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Fig. 2. Comparison between the plasma insulin from the insulin PK model
(G1(s)) and both Dalla Man and Mudaliar experimental data.

signaling (G2(s) in Fig. 1). The schematic of the components

involved in the glucose uptake by adipose tissue are shown in

Fig. 3. Here Ip is the insulin concentration at the interstitial

fluid, IR is the insulin receptor, IRp is the phosphorylated

IR, IRS is the insulin receptor substrate, IRSp is the phos-

phorylated IRS; PKB is the protein kinase B, PKBp is the

phosphorylated PKB; GLUT4 is the glucose transporter

4 and GLUT4pm is GLUT4 translocated to the plasma

membrane. The model structure relates the insulin effects

Glucose
uptake

Ip

Fig. 3. Schematic outline of insulin signaling pathways. Arrows relates
intracellular signaling flow of insulin, from insulin receptor to glucose
transporter 4 translocated on the plasma membrane.

on glucose uptake through the insulin signalling cascade

inside the cells. The states of the model (2) are the simulated

signalling proteins that are either non-phosphorylated or

phosphorylated (subscript p). The model parameter values

are those presented in [6], obtained by fitting the model to

experimental data while imposing certain output constraints.

˙IR = k1bIRp − k1fIR Ip − k1basalIR (2)

˙IRp = −k1bIRp + k1fIR Ip + k1basalIR

˙IRS = k2bIRSp − k2fIRS IRp

˙IRSp = −k2bIRSp − k2fIRS IRp

˙PKB = k3bPKBp − k3fPKB IRSp
˙PKBp = −k3bPKBp + k3fPKB IRSp
˙Glut4 = k4bGlut4pm − k4fGlut4 PKBp

˙Glut4pm = −k4bGlut4pm + k4fGlut4 PKBp
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In order to obtain a lower-order model, a step response of

model (2) was considered and it was found that it could be

well fitted by a first-order model

G2(s) =
Glut4pm(s)

ip(s)
=

K2

(τ3s+ 1)
(3)

The responses of the full order model (2) and the first order

model (3) are shown in Fig.4. As can be seen the low-order

model can describe the insulin dynamics well. Once the
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Fig. 4. Comparison between the dynamics of the GLUT4 translocation
from the linear insulin signalling model G2(s) and the nonlinear insulin
signalling model (2).

models G1(s) and G2(s) have been obtained, the insulin

feedback gain and the outer glucose feedback controller

were designed and tuned for the average patient of the

UVA simulator [11]. In this case, a proportional-derivative

controller was chosen. An integral part was not included in

order to avoid excessive insulin infusion. The PD-controller,

named controller in Fig. 1, is

uc(t) = Kp

[

e(t) + td
de(t)

dt

]

(4)

where, Kp is the proportional gain and td is the deriva-

tive time. The tuning values for the PD are Kp=-3.2 and

td=60 min and the insulin feedback gain is KIFB=2.4.

The model parameters for G1(s) are K1=1,τ1=55 min and

τ2=55 min, for G2(s) are K2=1 and τ3=2.15 min. Also

for comparison, a pure glucose feedback controller (GFB)

using a PD-controller with the same tuning parameters was

considered too. Finally, performance was evaluated for a

T1DM patient population keeping the tuning parameters

obtained previously fixed.

III. In silico TRIALS

Preclinical testing trial is an important step to evaluate

the performance and robustness of closed-loop glucose con-

trol schemes. The UVa/Padova T1DM simulator [11] was

accepted by the U.S. Food and Drug Administration as an

alternative to animal trials of Type 1 diabetes control strate-

gies. It provides realistic results and covers a wide range of

the variability observed within the diabetic population. The

educational version of the simulator was selected for testing

the proposed glucose controllers in order to also evaluate

the inter-patient performance of the control schemes. The

nominal controllers (IFB, GFB) were all tested on a one week

scenario. The trials were started at the initial condition of

each adult patient given by the simulator with the controller

in closed-loop mode. Then, each controller in turn was

applied to all individuals of the adult population, keeping

the tuning parameters fixed at their nominal values, i.e., no

retuning in between patients. The adult population had the

same multiple meals routine provided by the simulator during

a one week scenario. The scenario included five meals with

a total of 205 g CHO per day; breakfast at 7:00 with 45

g CHO, lunch at 12:00 with 70 g CHO, snack at 16:00

with 5 g CHO, dinner at 19:00 with 70 g CHO and snack

at 23:00 with 5 g CHO. The performance assessment is

performed using the percentage within ranges metrics and

Control Variability Grid Analysis (CVGA) [12]. The grid

associates to each patient a point in a plane during the

scenario. The two coordinates correspond to the minimum

and maximum glucose measure in the analysed time interval.

The CVGA obtained for the adult population of patients

will have a cloud of points onto the grid. The result is

summarized by counting the percentage of points in the nine

regions (where A is the best and E is the worst levels of

glycaemic control quality). Figures 5-6 shows the CVGA

for controllers with and without multilevel information. With

the IFB controller, a tight and robust control is achieved

with all patients being located inside the A and B regions.

Using the classic GFB approach, 40% of the population were

inside the D region and 20% inside the C region, which

is considered as bad control. In Fig. 6 it can be observed

how controller using multilevel information achieve a robust

performance for inter-patient variability. Note that the IFB

controller has a good performance using the nominal tuning

for the average patient (see the star mark “⋆” in CVGA’s

figures). However, when the GFB controller is applied to

the entire population, a significant degradation in the control

performance for the classic GFB (60% outside of zones A

and B) compared with the IFB controller was obtained. As

can be seen in Fig. 5, IFB keeps the performance for the

whole population closer to the nominal patient, achieving a

smaller cloud of points. The controllers were also compared

using the percentage within ranges metrics. This metric gives

the percentage of testing period during which the patient’s

BG is within the acceptable (70-180 mg/dL), hypoglycaemic

(< 70 mg/dL) and hyperglycaemic (> 180 mg/dL) ranges.

The results in Table I show that IFB has an excellent

performance avoiding the hypoglycaemic episodes. It is well

known that hypoglycaemic episodes are the major limiting

factor in the glycaemic management, and they also produce

serious consequences in the health of diabetic patients [13].

Patients using the controller without multilevel information

have 20.1% of the time in hypoglycaemic zone (below 70

mg/dl) and 12.2% above 180 mg/dl. The IFB controller keeps

the glucose above 70 mg/dl at all times, thereby avoiding the

risk of hypoglycaemia. This is a remarkable improvement

resulting from the use of intracellular information in glucose

control. It can be seen that the major difference between the

controllers is in the zone below 70 mg/dL glucose. This is be-
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Fig. 5. CVGA for insulin feedback controller. The grid is divided into
nine square zones associate with different degrees of clinical risk ranging
from A (excellent control) to E (poor control). Each circle represents the
coordinates associated with a single patient (x is the minimum glucose value
and y is the maximum glucose value). The star mark “⋆” represents the
average patient used for nominal tuning.
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Fig. 6. CVGA for glucose feedback control. The grid is divided into nine
square zones associate with different degrees of clinical risk ranging from A
(excellent control) to E (poor control). Each circle represents the coordinates
associated with a single patient (x is the minimum glucose value and y is
the maximum glucose value). The star mark “⋆” represents the average
patient used for nominal tuning.

cause the additional information available limits overdosing

insulin thereby avoiding hypoglycaemic events. The results

show that the incorporation of multilevel information for

designing glucose control algorithms improves the glucose

control considerably.

IV. CONCLUSION

In this paper, a novel approach to developing closed-

loop glucose controllers using multilevel models has been

presented. The principle idea is to utilize the knowledge

of intracellular processes affecting glucose dynamics to

achieve improved blood glucose control. The proposed mul-

tilevel model describes the interactions between the high-

level glucose dynamics and the low-level intracellular signal

transduction. The latter is important also for describing the

daily variations in insulin sensitivity seen in diabetic patients.

An insulin feedback controller was proposed based on the

TABLE I

CONTROLLERS’ PERFORMANCE ASSESSMENT (VALUE±SD).

Controller IFB GFB

% 70-180 89.6±8.7 67.7±10.3
% below 70 0.0±0.0 20.1±9.8
% above 180 10.4±5.2 12.2±6.9

multilevel model. By applying the IFB controller to well

established in silico adult populations of T1DM diabetic

patients, two highly significant improvements from using

intracellular information were obtained. First, a significantly

reduced risk of hyperglycaemic and, in particular, hypo-

glycaemic episodes. Second, a significant increase in the

robustness of the control, evidenced by a small interpatient

variability for fixed controller parameters in comparison to

standard pure glucose feedback controllers. As shown in

this paper, incorporation of intracellular information opens

up new possibilities for glucose controller design, mainly

because variables that play a key role in the glucose home-

ostasis can be incorporated.
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