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Abstract²Steady State Visual Evoked Potentials (SSVEPs) 

have been used to quantify attention-related neural activity to 

visual targets. This study investigates how empirical mode 

decomposition (EMD) can improve detection accuracy and rate 

of SSVEPs. First, the scalp-recorded electroencephalogram 

(EEG) signals are decomposed into intrinsic mode functions 

(IMFs) by EMD. Then, IMF components accounting for 

SSVEPs are selected for target frequency detection. Finally, 

target frequency is identified by two methods: Gabor transform 

and Canonical Correlation Analysis (CCA). This study 

quantitatively explores the impact of EMD on the target 

frequency detection. Empirical results show that the EMD 

improves their recognition accuracy when Gabor transform is 

used, even in a shorter Gaussian window, but has little effects on 

the performance of the CCA. Further, this study finds that 

harmonic responses of the target frequency can be used to 

enhance the SSVEP detection both for the Gabor transform and 

CCA. 

I. INTRODUCTION 

Brain-Computer Interface (BCI) allows users to control 

special computer applications using brain activity. Most of 

BCI approaches are based on Electroencephalography (EEG) 

recorded from the scalp. Steady-state visual evoked potentials 

(SSVEPs) are natural brain responses to repetitive visual 

stimuli, such as a flicker on a computer screen. The frequency 

range associated with the SSVEPs normally comprises the 

fundamental frequency of the visual stimulus as well as its 

harmonics [1-3].The SSVEP-based BCI capitalizes these fast 

and natural brain responses to detect where a user visually 

fixates/attends. Many related works [4-11] have received 

widespread attention in recent decades. 

Time-frequency analysis and Canonical Correlation 

Analysis (CCA) are two classical methods used in detecting 

the frequencies of SSVEPs [12-13]. Time-frequency 

spectrum is estimated from EEG signals within a sliding time 

window and its peak is taken as the detected SSVEP 
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frequency. Gabor Transform is usually adopted as 

time-frequency analysis tool due to its high precision ratio. 

The CCA is also applied to detect SSVEP frequency by 

extracting a narrowband frequency component of SSVEP. 

The longer sliding window for Gabor Transform and CCA 

usually results in higher detection accuracy, but suffers from 

long data-collection and processing times. It also requires 

long fixation from subjects, causing visual fatigue. This study 

discusses how to improve the SSVEP detection accuracy and 

rate. 

Empirical Mode Decomposition (EMD) is a 

pre-processing method of Hilbert-Huang transform (HHT), 

which was originally proposed by N.E. Huang et al [14]. EMD 

can decompose a nonlinear and non-stationary time series 

into its intrinsic mode functions (IMFs). The IMFs were 

designed to reject unwanted fluctuations according to 

instantaneous spectra of IMFs. The decomposition method 

maintains the original shape of the data. Therefore, it is 

adaptive and highly efficient to analyze the EEG signals that 

may be nonlinear and/or non-stationary [15-16]. 

This study discusses the effect of EMD, as a pre-processing 

step for Gabor Transform and CCA, on the detection 

accuracy and rate of SSVEP. To be more specific, the EMD is 

used to extract main components from the original EEG 

signal. Then the Gabor transform or CCA is employed to 

detect the frequencies of SSVEPs from the resultant EEG 

signals. This study also uses the spectral power near both the 

first and second harmonic frequency of the flickering stimuli 

to improve the SSVEP detection. 

II. METHOD 

A.  Data Acquisition 

Three volunteer subjects with normal or 

corrected-to-normal vision participated in this study. Subjects 

were seated in a comfortable chair in front of a computer 

monitor, and 256-channel EEG data sampled at 2,048Hz, 

were collected using a Biosemi ActiveTwo system. The 

visual stimulus was a 3×3 cm flicker rendered at the center of 

a cathode ray tube (CRT) monitor [17]. The stimulus 

frequencies ranged from 9Hz to 13Hz with an interval of 1Hz. 

The experiment consisted of four sessions. Each included five 

30s-long trials for the five different stimulus frequencies, 

which were randomly presented. Subjects were asked to gaze 

on the flickering stimulus for 30 seconds and then take a ~15s 

rest after each trial to avoid visual fatigue caused by 

flickering. There was a several-minute break between two 

consecutive sessions. 

B. EMD 

EMD is the core algorithm of HHT that decomposes 
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nonlinear and non-stationary signals into various IMFs. The 

IMFs are obtained by a sifting process, and they should 

satisfy two conditions: (1) The number of extrema and the 

number of zero crossings have to be equal or differ at most by 

one; (2) It has a zero mean. 

Given a non-stationary signal x(t), the EMD algorithm 

comprises the following steps: Step (1) Search all local 

extrema of x(t), including the minima and maxima, and then 

fit them with a cubic spline curve to obtain the upper and 

lower envelop, respectively. Step (2) Calculate the mean 

value, m(t), of the upper and lower envelops. The difference 

between the decomposed signal x(t) and m(t) is denoted as 

h(t): 

h(t) = x(t) - m(t) (1) 

If h(t) does not satisfy the above two conditions ofIMF, x(t) 

is replaced with h(t) ,and repeat the steps(l) and (2). 

Otherwise, h(t) is an IMF, c(t), and the difference between 

x(t) and h(t) is denoted as r(t), that is 

1( t-D /2)2 
Bo(t) = e -2 aDlZ , (5) 

where D is the width of the window. Function B 0 

asymptotically approaches to zero with a rate determined by 

parameter a. When a is larger, the function drops to zero 

faster. 

D. CCA 

CCA is a commonly used method for measuring the linear 

relationship between two sets of multivariate data. This study 

thus also employed CCA to analyze the EEG [13]. For two 

multidimensional variables X and Y, Xis the 4-channel EEG 

signals in this study. The set of reference signals Y is chosen 

as follows: 

(

sin(2nf t)) 
cos(2nf t) 

y = sin(4nft) ' 

cos(4nft) 

(6) 

r(t) = x(t) - h(t) (2) where/is the stimulus frequency. 

Step (3) Take the residual signal r(t) as x(t), and repeat the 

procedures (1) and (2) to obtain a series of IMF components 

until r ( t) is the one that cannot be further decomposed into an 

IMF. If the number of IMF is n, we can reconstruct the original 

signal data from all IMF components C; (t), i=l,2, ... n, as 

(3) 

The collected EEG data are first down-sampled to 

256Hz. Each 30s trial is split into six 4s epochs time-locked to 

the stimulus onset [ 1 7]. Then we choose 4 scalp locations 

over the occipital cortex, the brain area involved in receiving 

visual signals. These channels are located around Oz in 

standard 10-20 electrode placement system. The EMD is 

applied to the signal recorded at each of the 4 channels 

separately. Fig 1 shows a sample 24s EEG recording from 

Subject 1. 

Original EEG signal 

-100 ---~--~---~--~~~ 

0 5 10 

1ime/s 

15 20 

Figure 1. 24sec EEG raw data from subjectl. 

C. Gabor transform 

The Gabor transform of a signal x(t) can be defined by this 

formula 

G
0 

(f, t) = (x(t'), Bo (t' - t)e-Zrrift') 

=I~: x(t') ·Bo (t' - t)e-Zrritt' dt', (4) 

where * denotes complex conjugate, the Gaussian window 

function gn is 

III. RESULTS 

A. IMFs 
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Figure 2. The EMD decomposition of the EEG signal shown in Fig 1 (IMF! 

to IMF14) and their powerspectra_ 
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Fig 2 shows the results of EMD decomposition of the 

signals shown in Fig 1. The signal shown in Fig 1 was 

decomposed by EMD into IMFs. EMD decomposed the EEG 

signal into fourteen IMFs. Among them, the IMF1 accounted 

for the high-frequency (up to 130Hz) activity. The IMF2 

corresponded to the 0-60Hz activity. The frequency content 

of the IMF3 and IMF4 ranged from 0 to 30Hz. Basically, The 

rest of IMFs represent low-frequency (below 5Hz) activity. 

This study focused on the first four IMFs as their spectra 

overlapped with the SSVEP stimulation frequencies (or 

harmonics), while discarded the low-frequency components 

(IMF5-14). Particularly, the IMF3 contains the main SSVEP 

stimulus frequencies involved, this study thus combined 

IMF3 with IMF1, IMF2, IMF4 to reconstruct four versions of 

EMD preprocessed signal: (1) the IMF3; (2) the sum of IMF3 

and IMF4; (3) the sum of IMF2-4; (4) the sum of IMF1-4, to 

form the reconstructed EEG signals for SSVEP detection. 

Although the IMF12 and IMF13 included some 

high-frequency activities, their amplitude were very small. 

 

 

Figure 3.  The EEG signals before and after EMD-based denoising. 

Fig 3 plots concatenated five segments of 24s data, 

extracted from different sessions in which the subjects gazed 

at different stimuli flickering at 10, 12, 11, 9 and 13Hz. The 

blue trace shows the original EEG signals.  The red trace 

shows the sum of IMF1-4 obtained by the EMD. The EMD 

preprocessing removed daunting slow drifts in the original 

EEG recording. 

 

B. Effect of EMD on SSVEP detection accuracy based on 

Gabor Transform 

 
(a) (b)  

Figure 4.  Gabor time-frequency spectrum with D=4s, .=2.5 (a) The 

original data, (b) The sum of IMF1-4. 

Gabor transform was then applied to the preprocessed 

signals to estimate their spectra. Fig 4 compares the resultant 

power spectra of original signals and the sum of IMF1-4. The 

spectra of the original signals included abundant 

low-frequency activity in Fig 4(a), which was absent in Fig 4 

(b). Fig 4 shows that the sequence of the detected SSVEP 

frequencies was 10-12-11-9-13, which matched the flickering 

sequence of the visual stimuli. We extract the peak 

frequencies and take them as the SSVEP frequencies. Fig 5 

presents the detected SSVEP frequencies using the original 

and EMD-preprocessed data with different window sizes, 

D=4s and 2s. The SSVEP detection accuracy using a 2s 

window (Fig 5 (c) (d)) was lower than that using a 4s window 

(Fig 5 (a) (b)). Further, EMD preprocessing improved the 

recognition accuracy at the same window size.  

 
(a)                                 (b) 

 

(c)                                              (d) 

Figure 5.  SSVEP frequency detected changes with sliding time in Gabor 

Transform using (a) The original EEG signal (D=4s,.=2.5,); (b) The 

EMD-preprocessed signal (D=4s,.=2.5,);(c) The original signal 

(D=2s,.=2.5);(d) The EMD-preprocessed signal (D=2s,.=2.5). 

 As visual stimuli induced not only SSVEPs at the 

flickering frequency, but also its higher harmonics, this study 

leveraged the higher harmonics to improve detection 

accuracy. When detecting SSVEP frequency based on the 

best working channel of 4 channels, this study multiplied the 

amplitude of fundamental frequency by that of its second 

harmonic response. Then, the frequency with the highest 

amplitude product was taken as the SSVEP frequency. 

 

 
(a)                                             (b) 

Figure 6.  Accuracy rating of identifying target frequency using Gabor 

transform (a) Without using the second harmonic frequency, (b)Using the 

second harmonic frequency. 

Fig 6 shows that the averaged SSVEP detection accuracy 

of three subjects as a function of the size of the sliding 

window. In general, the detection accuracy improved as the 

size of the sliding window, D, increased. Further, EMD 

preprocessing improved the recognition accuracy at the same 

window size. For example, at D=0.5s, the detection accuracy 

improved from 24% (using the original signal) to 40% (using 

the sum of IMF1-4). 
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Fig 6 also compares the SSVEP detection accuracy with 

(Fig 6(b)) and without (Fig 6(a)) using harmonics. When the 

harmonic response was used in the SSVEP detection, IMF1-4 

had the best detection rate, while IMF3 and IMF3-4 had a 

lower accuracy than the original signal because the IMFs did 

not contain much of the harmonics (Fig 2). In general, using 

the second harmonic response improved the SSVEP detection 

performance (Fig 6(a) vs. Fig 6(b)).  

C. Effect of EMD on SSVEP detection accuracy based on 

CCA 

  

This study investigates the effect of EMD and high 

harmonics on the detection accuracy based on the CCA. Fig 7 

shows the averaged accuracy curve of three subjects with and 

without using harmonic responses. The results showed that 

the EMD had a less effect on the CCA, compared to that on 

Gabor Transform. The SSVEP detection accuracy was 

comparable between using the original and 

EMD-preprocessed data. It is also evident from comparing 

Fig 7 (a) and Fig 7 (b) that incorporating the harmonic 

response could improve the SSVEP detection accuracy.  

 

   

(a)                                                                (b) 

Figure 7.  SSVEP detection accuracy rate using CCA (a) Without using the 

second harmonic response; (b) Using the second harmonic response. 

D. Compare Effect of EMD on SSVEP detection accuracy 

based on Gabor transform and CCA 

Fig 8 quantitatively compares the impact of EMD on the 

Gabor transform and the CCA with D=0.5s. It is evident that 

EMD was a very effective preprocessing tool for the Gabor 

transform, but had little impact on the CCA. This result 

suggests that the CCA is less sensitive to the noise. Further, 

including harmonic responses of the SSVEP fundamental 

frequency could improve the SSVEP detection accuracy. 
 

 
(a)                                                                (b) 

Figure 8.  The SSVEP detection accuracy using the CCA and Gabor 

transform with D=0.5s, .=2.5. (a) No harmonic response was used, (b) Using 

the second harmonic response. 

IV. CONCLUSION 

This study systematically tested the impact of EMD on the 
detection of SSVEP frequencies. EMD decomposed the 

original EEG signals into IMF components. SSVEP-related 
IMFs were then extracted for further analysis. Results of this 
study showed that EMD preprocessing considerably improved 
the performance of SSVEP detection based on Gabor 
Transform, but had less influence on the CCA. Further, using 
the second harmonic response of the fundamental stimulation 
frequency enhanced the SSVEP detection performance both 
for the Gabor transform and CCA.  
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