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Abstract² Reliable information from patient monitors 

enhances treatment for critically ill patients.  Redundant 

sources for information would aid identification of faulty 

sensors and leads, and improve presentation of physiological 

data.  Respiratory information can be obtained from several 

sources, including airway pressure and central venous pressure 

(CVP).  CVP signals have been analyzed using frequency 

information to isolate the respiration related part of the signal 

or to obtain statistics about respiration.  This study uses a state 

machine algorithm to detect the timing of each cycle of 

respiration.  A state machine has advantages of enforcing a 

predictable cycle of expiration and inspiration.  The detection of 

respiratory cycles can be done in real-time, allowing 

identification of irregular periods between inspirations and 

prolonged periods with no inspiration, for which an alert may 

be issued.  The algorithm was tested on data obtain from the 

PhysioNet database of recordings from intensive care patients.  

The airway pressure signal was used to determine WKH� ³WUXH�

values´�RI�WKH�WLPLQJ�RI�HDFK�UHVSLUDWRU\�F\FOH�IRU�FKHFNLQJ�WKH�

accuracy of the algorithm analyzing the CVP signal.  

Parameters of the algorithm were found that would result in a 

true positive value of above 98% for detection of each cycle of 

respiration from analysis of the CVP signal, compared to 

analysis of the RESP signal. 

I. INTRODUCTION 

Care of patients in emergency room and intensive care 
requires knowledge of cardiovascular and respiratory 
function.  Vital functions in critically ill patients may undergo 
slow changes over hours or rapid changes under a minute, 
which should be addressed by changes in treatment.  For 
treatment to be modified appropriately, reliable measurements 
that reflect the function, and especially changes, within the 
cardiovascular and respiratory systems needs to be determined 
and communicated to the medical staff.  The accuracy of 
information from patient monitors may be affected by artifacts 
such as changes in each sensor or lead wires, changes in body 
position and other factors unrelated to the actual physiological 
function that the measurement is meant to reflect.  When 
presented with measurement signals that would indicate a less 
stable and viable physiological state, medical staff may need 
to consider whether the cause of the poorer signals is a 
problem with the sensors and patient monitoring system, or 
changes within the physiological state of the patient.  This 
consideration may delay or misdirect appropriate treatment. 
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One way to improve reliability of the measurements is to 
have redundant sources to determine each measurand.  For 
example, if one source for a measurand showed no viable 
signal, but another source for the same measurand showed a 
viable physiological signal, then a software algorithm could 
use that information toward determination of a probable 
interpretation of the conflicting measurements, and 
communicate to the medical staff that the sensors and leads 
related the first source should be checked, but the 
physiological function is reflected by the measurements from 
the second source. 

Information about the timing of respiration can be 
determined by analyzing signals from multiple sources, 
including airway pressure (RESP), Photoplethysmography [1, 
2], and central venous pressure (CVP) [3-6].  The amplitude of 
the pressure signal of CVP contains modulation that reflects 
intrathoracic pressure fluctuations that occur with respiration, 
as well as cardiac contractions.  

Respiratory information has been obtained from CVP 
signals using several methods based on filtering or analysis of 
frequency components.  Such methods to isolate the 
respiratory signal include band pass filter [3, 6], frequency 
power spectra using transfer function analysis [4], 
independent component analysis [6], squared coherence 
analysis [2], and Kalman filter [7].  These methods have been 
used to obtain statistical information about the respiratory 
signal, such as rate of respiration [2, 4].  However, detection of 
the times of individual cycles of inspiration and expiration was 
not shown within these reports.  Detection of individual cycles 
of respiration could be used to detect irregular intervals 
between cycles of respiration and possibly make an alert after 
detecting a prolonged period without a respiration event, so 
that an intervention could be taken toward restoration of 
respiratory activity.  A software algorithm that would compare 
redundant respiratory information from multiple sources could 
use the timing of recently detected inspiratory cycles to 
determine whether the sensors from one source were not 
functioning, but viable respiratory cycles were still occurring.   

We have previously developed an algorithm based on a 
state machine that analyzes sequential samples of 
electromyogram signals from diaphragm muscles in rats 
during cycles of spontaneous respirations [8-9].  Respiration 
has a restricted cycle of desirable states, progressing from 
periods of expiration to periods of inspiration. A 
state-machine is a method to track the progression through the 
cycle of respiration, in that it encodes history by classifying 
the current state, which then restricts possible choices from 
that state. Advantages of the state machine approach are the 
enforcement of the inspiration and expiration phases of the 
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respiratory cycle, low computation cost, and real-time 
detection of the inspirations.   

 

Fig. 1: Example traces of the measured traces, derived values and state.  

CVP and RESP are the signals from the PhysioNet that were analyzed by 

the algorithm.  S1 and S2 are the slope values of the linear fit of the moving 

time windows of n1 and n2.  The values of the State Machine are plotted 

for the states of Detection, Look for Exhale, Putative Inhale or Putative 

Exhale, and Ready for Inspire. 

In the present study, we have modified the state machine 
algorithm for applications of CVP signals from human 
patients.  The purpose of the study was to adjust the 
parameters of the algorithm to maximize the number of true 
positives (TP) for having one detection of a respiratory cycle 
from the CVP signal per respiratory cycle detected from the 
airway pressure (RESP) signal.  The state-machine classified 
the second derivative of a moving window of the CVP signal 
values. The algorithm was tested on CVP signals derived from 
patients in intensive care units (ICU) that were recorded and 
made available on the PhysioNet (www.physionet.org) 
database [10].  

II. MATERIALS AND METHODS 

A. Determination of Respiration Timing from Airway 

Pressure Signal 

RESP and CVP signals that were simultaneously recorded 

for a patient were used to determine the timing of each cycle 

of respiration in the 10-minute recorded signal.  The RESP 

VLJQDO�ZDV�XVHG�WR�GHWHUPLQH�WKH�³WUXH�YDOXH´�RI�WKH�WLPLQJ�IRU�

each cycle of respiration.  These values were later used to 

determine the accuracy of the algorithm that was analyzing 

the CVP signal to determine the timing of each cycle of 

respiration. 

Maximum and minimum values between rising and 

falling edges of the RESP signal were determined.  The 

timing of the rising and falling edges was when the values 

crossed the mean value.  For the rising trace between the 

adjacent minimum and maximum values, the 5 percentile 

value was considered the start of the inspiration, and the 95 

percentile value was considered the end of the inspiration. 

The RESP signal with the determined start and end timings of 

each inspiration were visually inspected as a quality control.  

These values that defined the timing of each respiratory cycle 

ZHUH�XVHG�DV�WKH�³WUXH�YDOXHV´�IRU�FRPSDULQJ�WKH�YDOXHV�WKDW�

were determined by the new algorithm that analyzed the CVP 

signal.  An example of the CVP and RESP signal that was 

analyzed is shown in Fig. 1. 

B. Signal Representation of the CVP Signal 

In the recorded CVP signal, Xi denoted the discrete 
time-series value of the most recent CVP sample, and Xi-1 was 
the value sampled just prior to Xi.   

The points Xi in the CVP were sequentially analyzed, such 
that only the current Xi point and prior points were used for the 
analysis.  For each Xi, a subset of the most recent n1 points of 
X was selected.  The first derivative of this set of points was 
determined by doing a linear fit using the least square method.  
For this linear fit, the CVP value was along the y-axis and the 
time value was along the x-axis. The slope of this linear fit was 
denoted Sj, and stored in an array of S1 values, one Sj value for 
each Xi point.  Then for each new Sj value, a subset of the most 
recent n2 points of S1 was selected.  Finding the slope of these 
points determined the second derivative for the corresponding 
Xi point.  The second derivative was denoted Si and stored in 
an array S2, one Si value for each Xi value of the CVP signal.  
An example of the derived S1 and S2 traces is shown in Fig. 1.  

 

Fig. 2: State machine used to characterize the state of the respiratory cycle 

based on the second derivative (Si) of the most recent set of points 

sampled of the CVP signal.  To pass from the Look for Exhale state to the 

Putative Exhale, the Si value needed to be below the Threshold value (t).  

Then to pass to the Ready for Inspire state, the Si value had to remain 

below t for Re samples.  Similarly, to pass from the Putative Inspire state 

to the Detection state, the Si needed to remain equal or above t for Ri 

samples.  The Detection state would indicate that an inspiration had been 

detected.  The time at this detection would be recorded as the time of an 

inspiration.  If the algorithm works properly, there should be one and only 

one Detection event for each full cycle of respiration. 

 

The array of second derivatives (Si) of the two windows 
(most recent n1 points for the first derivative, and most recent 

3854



  

n2 points for the second derivative) was used as the signal 
representation and given as input to the state machine.   

 

C. Characterization by State Machine 

A state-machine (Fig. 2) was utilized to characterize each 

new second derivative Si and determine the current state. The 

design of the state-machine was intended to enforce a cyclic 

pattern of a period of exhalation, followed by a period of 

inspiration. The algorithm began in the Look for Exhale state, 

one of five states that the algorithm cycled through.  

In the Look for Exhale state, if Si was below threshold, the 

algorithm switched to the Putative Exhale state, and a counter 

variable, c, was reset to 0 (Fig. 2). For the algorithm to pass 

from the Putative Exhale state to the Ready for Inspire state, 

the value for Si had to remain below the threshold for a certain 

number of times, Re.  The duration of time corresponding to a 

particular Re value depended on the frequency of sampling, 

which was 125 Hz in this study. 

Once in the Ready for Inspire state, the algorithm began to 

look for activity that might indicate inspiration. If a Si value 

was at or above threshold, the algorithm advanced to the next 

state, Putative Inspire, and the counter c was reset to 0 (Fig. 

2). For the algorithm to pass from the Putative Inspire state to 

the Detection state, the value for Si had to remain at or above 

the threshold for Ri number of times.  

Once in the Detection state, the time was recorded, 

indicating that an inspiratory event had been detected.  If 

working properly, the algorithm should detect one and only 

one Detection event for each full cycle of respiration.  

Following Detection, the Look for Exhale state was entered 

(Fig. 2), and the algorithm repeats the cycle.  An example of 

the resulting states from the input signals is shown in Fig. 1. 

D. Testing Methods 

The timing of each inspiration from the CVP algorithm 
was compared with the timings that were determined from the 
RESP signal.  The CVP derived timings were considered the 
experimental ones, and the timings from the RESP signals 
ZHUH�FRQVLGHUHG�WKH�³WUXH�YDOXHs´���$�7UXH�3RVLWLYH�HYHQW�ZDV�
assigned if one and only one inspiration was detected from the 
CVP signal for each cycle of respiration.  The timings of the 
cycle of respiration were defined as beginning at one detection 
of inspiration and ending at the next detection of inspiration 
from the RESP signal.  A True Positive was not accredited if 
either 0 or more than 1 inspiration were detected from the 
CVP signal during the time duration of a cycle of inspiration 
from the RESP signal 

E. Source of Data 

The data recordings to test the algorithm on were obtained 

from the PhysioNet (www.physionet.org) database [10].  The 

records selected were REWDLQHG�IURP�GDWDEDVH�³&KDOOHQJH�

�����7HVW�6HW�$´�DQG�³&KDOOHQJH������7HVW�6HW�%´���Data 

were recorded from patients in ICU. The data was sampled at 

125 Hz.  A 10 minute period for each of 14 records were 

selected based on having both a RESP and CVP signal during 

periods of respiratory activity.  The selected recording 

periods were downloaded, stored as a file and utilized for 

analysis of the algorithm. 

 

F. Computing Platform 

The algorithm was implemented in the LabView (National 
Instruments, Austin, TX, USA) programming language and 
was run on a Windows based personal computer. 

Table 1: Parameter definitions and values tested by algorithm to search 

for values yielding highest TP %. 

Parm Description / values tested 

n1 Number of most recent Xi points to find 1st Derivative 

 16, 32, 64, 128, 256, 512 

n2 Number of most recent Sj points to find the 2nd Derivative 

 16, 32, 64, 128, 256, 512 

Ri Number of Si points that had to remain at or above Thr to enter 

the Detection state 

 2, 4, 8, 16, 32, 64, 128, 256 

Re Number of Si points that had to remain below Thr to enter the 

Ready for Inspire state 

 4, 8, 16, 32, 64, 128, 256, 512 

Thr Threshold 

 -0.4, -0.3, -0.2, 0, 0.2 

 

III. RESULTS 

The algorithm was applied to the CVP signals (Fig. 1).  A 

search of the parameters was conducted to find parameter 

values that resulted in high TP % values.  Table 1 shows the 

parameter values tested. 

Fig. 3 shows the results of this analysis.  Eleven sets of 

parameter values resulted in the highest values found for TP 

%, which were just above 98%.  The values of the algorithm 

parameters that resulted in high values for TP% were as 

follows:  n1 is 256, n2 is 64, Ri is 64, Re is 64 and Thr is -0.3.   

IV. CONCLUSION 

A state machine algorithm has been developed and tested 

to detect the timing of each respiratory cycle based on the 

CVP signal.  The algorithm shows promise as being a method 

to obtain the breath by breath timing of inspirations, based on 

the CVP signal.  This could be used as a redundant source of 

respiratory information that could be coordinated by the 

software controlling patient monitors.  Having redundant 

sources for critical information, such as respiration, would 

allow intelligent software to present more reliable, useful and 

timely information to the medical staff.  For example, 

consider a case where a viable respiratory pattern ceased in 

the signal derived in one source, but a viable respiratory 

pattern was still maintained in the signal from another source.  

After analysis, intelligent software might communicate to the 

medical staff to check the sensor and leads for the potentially 

faulty source, but communicate that the patient still appears to 

be maintaining a viable respiratory signal.  Such an 

envisioned system may enhance care of patients by providing 

more reliable information and allowing more timely 

adjustments to the treatment as appropriate. 
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Further testing will be necessary to determine how accurate 

and reliable this algorithm is, and how suitable for further 

development toward possible clinical application. 
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Fig. 3: Results of the search of parameter values for the algorithm that 

resulted in high TP %. Parameters of the n 1 and n2 are varied in (A), 

parameters R, and R, are varied in (B), and parameter Threshold is varied in 

(C). Except for the parameters being varied in each plot, the other values are 

as follows: n1 is 256, n2 is 64, R, is 64, R, is 64 and Thr is -0.3. These 

parameter values were among those that resulted in the highest values ofTP 

%,just above 98%. 
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