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Further Applications of Doppler Radar for Non-contact Respiratory
Assessment
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Abstract— This paper further investigates the use of Doppler
radar for detecting and identifying certain human respiratory
characteristics from observed frequency and phase modula-
tions. Specifically, we show how breathing frequencies can be
determined from the demodulated signal leading to identifying
abnormalities of breathing patterns using signal derivatives,
optimal filtering and standard statistical measures. Specifically,
we report results on a robust method for distinguishing cessa-
tion of the normal breathing cycle. The proposed approach can
have potential application in the management of sudden infant
death syndrome(SIDS) and sleep apnea.

I. INTRODUCTION

Non-contact techniques for detecting and measuring hu-
man physiological functions such as heartbeat and respiration
rates have recently received significant attention over more
conventional methods such as ECG or chest strap monitors
[5]. Research has already been reported on using microwave
Doppler radar for measuring respiratory function[10], [16],
[8], [15], [3], [4] as well as other approaches using ultra
wideband (UWB) radar [13], [11]. Such non-contact mon-
itoring has significant potential for a range of applications
from rescue operation in disaster management (earthquake
and tsunami) to sleep pattern monitoring and sudden infant
death syndrome (SIDS).

The Doppler effect occurs when there is a shift in the
frequency of the wave, either reflected or radiated, due to
relative motion between the transmitter and receiver [14]. In
other words, a target that moves in a quasi periodic move-
ment will reflect the transmitted signal with it’s frequency
or phase modulated by the time varying position of the
target[9]. The frequency of the wave will be shifted directly
proportional to the object’s motion and will be increases
when the wave is compressed (smaller wavelength) [14].
That is, in radar, Doppler shifts are generated when there
is a relative motion between the radar and the object.

Typically, using Doppler radar, information for both vital
signs heartbeat and respiration can be extracted from the
phase modulated by the time varying physiological move-
ment of the chest-wall. However, such physiological motions
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are elastic, deformable and, with clothing, create significant
issues of noise, adversely affecting the sensitivity. Partially
due to this and the envisaged application, we simply focus
on robustly detecting if a given breathing pattern is normal
or abnormal for an individual (for both chest and diaphragm
breathing[6]). We focused more on diaphragm breathing as
the Doppler shift is stronger compared to chest breathing,
the latter being more shallow, less displacement and so lower
amplitude[12].

Detecting anomalies in breathing patterns is essential for
successful intervention strategies in diseases such as SIDS.
Here, typical anomalies are defined by the cessation of
breathing for a period of time. Equally, sleep apnea is defined
when a patient does not breathe for more than 10 seconds
and occurs more than 5 times [2] while sleeping. We will
see that demodulated I/Q signals from the Doppler radar
can be reliably used to distinguish between breathing and
non-breathing for such conditions after signal processing is
applied.

This paper is organized as follows. Section II briefly
describes the fundamental idea in using Doppler radar for
the detection of physiological movement of abdomen for
breathing. Section III discusses the experimental setup of
the Doppler radar system. Section IV presents the method of
digital signal processing and statistical analysis. Section V
concentrates on the results of the experiment with concluding
remarks in Section VI.

II. THEORETICAL REVIEW

Considering a continuous wave (CW) transmitted signal
from the radar defined by

T(t) = cos(2nft + §(1), (1)

where f is the operating frequency, ¢ is elapsed time, and
¢(t) is the phase noise of the signal source. If T'(t) is
reflected by a target at a nominal distance dy with a time
varying displacement, x(¢) caused by the movement of the
abdomen,whch has periodic movement with no net velocity,
the recieved signal at the receiver can be approximated by
R(t), [5]

dmdy  Ara(t)
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R(t) ~ cos(2m ft —

The phase needs to be demodulated in order to determine
the motion signature or to be detected in the receiver.

Typically, the received signal will be mixed with the local
oscillator and fed into low pass filtered to yield the baseband
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output, B(t) which is given as
B(t) = cos(0 + M%(t) + Ap(t)). 3)

As in quadrature receiver systems, local oscillator (LO) is
split into two quadrature LO signals which have il phase
difference and the received signal is split into two receiver
chains where each is mixed with corresponding LO signals
and filtered to yield in phase and quadrature phase signals
denoted by Ip(t) and Qp(t) correspondingly.

In quadrature systems, the two orthogonal baseband out-
puts are

I5(t) = cos(8 + 47”;“” + Ao(D)), 4)
Qp(t) = sin(6 + 47”§(t) +AG(L)). 5)

0 is the constant phase shift dependent on the nominal
distance to the target, and A¢(t)) is the residual phase
noise.The main advantage of using a quadrature receiver is to
overcome the null problem where at least one output (either
1/Q) is not null when the other is null as described in [5]

III. EXPERIMENTAL SETUP

We used a simple Doppler radar system as shown in Fig.
1 for this experiment. A CW radar operation at 2.7 GHz with
2.14 dBm, two panel antenna (a transmitter and a receiver),
I/Q demodulator (Analog device,AD8347), data acquisition
(NI-DAQ) were used. Signals received at the receiver were
direct converted into I/Q. The demodulated signal was then
sent to the DAQ and processed in a MATLAB environment.

.

A<

Fig. 1. Doppler Radar System

A male subject was located at a distance of 0.5 m from
the panel antenna focused more on the diaphragm rather than
the chest in order to obtained a better Doppler shift. Other
than that, we have also run the experiment by tilting the
body up to 30 degree to the right and left to analyze the
sensitivity of the received signal to mimic patient movements
while sleeping and to determine the number and position
of Doppler configurations to use. The subject was asked to
stand with minimal body motion and to breathe normally
and abnormally in order to replicate a sleep apnea scenario
for synthetic data collection. For abnormal breathing sub-
ject was asked to halt breathing after exhaling in a given
normal breathing period. Experiment was performed in a
comfortable environment with normal (cotton) shirt covering
the chest and diaphragm area.

IV. SIGNAL PROCESSING & STATISTICAL
METHODOLOGY

Summary of the the complete flow is shown in Fig. 2

A. Signal Processing

At the receiver, the signal was send to the AD8347 for
direct conversion into differential I/Q signals and then send
to the NI-DAQ being sampled at 1000 Hz. The differential
signal was converted into single ended I/Q baseband signals
and processed via MATLAB. The raw I/Q signals were
processed to reject DC offset and smoothed using a SG
(Savitzky-Golay polynomial least squares) filter. This filter
is designed to preserve steep changes in the signal while
still smoothing [7]. A Fast Fourier Transform(FFT) was then
performed to estimate the breathing rate with the normal
breathing rate range being 0.2-0.5 Hz corresponding to 12-
30 breaths/min respectively. We have also used the Fourier
filtering toolbox [1] to perform filtering on the time series
signal in order to obtain a more informed filtered output
signal (breathing pattern) than simply computing breathing
frequency.

B. Statistics

Here we have explored the use of statistical means to
differentiate the time varying signals into breathing and non-
breathing states. Normal breathing creates a significant phase
shift compared to the non-breathing state. As we are able to
detect the number of breathing transitions via the shape of the
demodulated 1/Q signal, we used the displacement between
the local maxima and local minima of each transition as
the state-dependent observation feature. Typically, breathing
consists of two components: inhale and exhale and so, for
simplicity, we assumed that normal breathing will have
corresponding phase shifts compared to the non-breathing
state.

Additional to that, we were able to find the derivative of
that particular transition where a significant positive gradient
is used to denote inhaling and vice versa for exhaling.
Furthermore, we also computed the standard deviation with
a moving window to see the variation on breathing and non-
breathing events.

V. EXPERIMENTAL RESULTS
A. Results analysis derived from curve and measurement

Result of the experiment for Q quadrature outputs for the
frontal position from the antenna are shown in Fig. 3 for
the normal breathing pattern and Fig. 4 for the abnormal
breathing pattern. From Fig. 3, we can see clearly that for
a period of 10 seconds there are approximately 3 breathing
cycles or approximately 18 breathes/min in (c). From the
FFT, in (d), at the range of 0.2-0.4 Hz, we can clearly
see the peak occurred at 0.3052 Hz corresponding to 18.3
breathes/min which is quite accurate when compared to the
curve in (c). This is the case for normal breathing.

As for abnormal breathing, the subject was asked to halt
breathing, after exhaling, in a regular breathing event and
this transition can be seen from Fig. 4. From the figure we
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can clearly see that the subject was breathing regularly for
10 seconds and stopped breathing from t=10 second to t=30
second and to breathe again normally after that. The data was
collected in a period of 40 seconds. From the FFT, in (d),
it shows that breathing rate is at 0.1526 Hz corresponding
to 9 breathes/min but from the graph,(c) it is expected
to be approximation of 6 breathes/min. For the abnormal
breathing, it is inaccurate to determine the breathing rate
just from the FFT itself due to the more complex breathing
pattern as it evolves over time. Furthermore, by analysing

the gradient pattern, we could identify the inhale (positive
gradient) and exhale (negative gradient) as well as non-
breathing event Using standard deviation statistical analysis,
we can further identify period of non-breathing event as
shown in Fig. 4 (f) where the non-breathing event will have
much lower standard deviation compared to normal breathing
event.
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B. Measurement Sensitivity

We have run another set of experiments where the subject
tilted the body up to approximation of 30 degree to the right
and left but still in the vicinity of the coverage of the single
Doppler system. Both of the results are shown in Figs. 5
and 6. Result shows that as long as the phase modulation
due to the movement of the diaphragm is received, we are
able to determine the breathing and non breathing event
using the simple statistical measures. From both figures,
a non-breathing event always had a much lower standard
deviation compared to a breathing event. Albeit the transition
or breathing signal and non- breathing signal is not that
obvious in Fig. 6 though additional sensors would overcome
this attenuation.

VI. CONCLUSIONS

A simple Doppler radar system is used to detect breathing
pattern as well as non-breathing events in relatively noisy
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radar signals. The demodulated I/Q is used to overcome the [8]
null point problem where it is then filtered, FFT and spectral
finding using MATLAB. We have only used simple statistical
measures but with very positive results. In all, our results [9
demonstrate the potential of Doppler radar for monitoring
and detection critical events for SIDS and sleep apnea. [10]

—
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