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Abstract— Short-term blood pressure variability is generally 

attributed to the baroreflex feedback control on heart rate and 

systemic vascular resistance (SVR), and the mechanical effect 

of respiration on stroke volume. Although it is known that 

respiration affects sympathetic outflow and deep breaths can 

lead to peripheral vasoconstriction, the respiratory modulation 

of SVR has been little studied. In the present study, we 

investigated the dynamics resulting from the respiratory 

modulation of SVR and its effect on blood pressure variability 

by employing structured and minimal modeling approaches. 

Using peripheral arterial tonometry as a noninvasive measure 

of SVR, we were able to estimate the respiratory-vascular 

conductance coupling mechanism. We found that the dynamics 

of the sigh-vasoconstriction reflex could be reproduced only 

when the respiratory modulation of SVR was incorporated into 

the closed-loop model. Lastly, we demonstrated that taking this 

respiratory modulation effect into account is essential for 

accurately estimating the dynamics of the SVR baroreflex. 

 

I. INTRODUCTION 

The spontaneous variabilities observed in measurements 
of heart rate (HR) and arterial blood pressure (ABP) reflect 
the dynamic behavior of regulatory mechanisms, such as the 
baroreflexes and chemoreflexes, as they interact with 
perturbations that originate from external sources or other 
organ systems [1]. It is now well known that heart-rate 
variability can be attributed to the underlying dynamics that 
result from three major mechanisms. HR fluctuations that are 
correlated with respiration (“respiratory sinus arrhythmia”, 
RSA) result from direct coupling between respiratory and 
cardiovagal neurons in the medullary structures as well as 
vagal feedback from the pulmonary stretch receptors. HR 
oscillations of both the low-frequency (0.04-0.15 Hz) and 
high-frequency (0.15-0.4 Hz) varieties can also be generated 
by fluctuations in ABP via the baroreceptors. In turn, HR 
fluctuations and the mechanical modulation of stroke volume 
by respiration contribute to blood pressure variability. 
Baroreflex control of peripheral vascular tone also plays an 
important role in generating blood pressure variability. 

It is well established from measurements of peroneal 
nerve activity that respiration modulates sympathetic neural 
outflow [2].  However, it appears that the respiratory-related 
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oscillations in sympathetic activity exert a strong modulatory 
influence on peripheral vascular tone only at lower 
frequencies [3]. Previous studies have shown rather 
consistently that deep breaths, akin to sighs, trigger 
peripheral vasoconstriction response [4, 5]. Similarly, we 
have observed this sigh-vasoconstriction response through 
measurements using peripheral arterial tonometry (PAT) or 
laser Doppler flow monitoring. PAT employs the principles 
of plethysmography to capture pulsatile volume changes in 
the finger produced by vasoconstriction or vasodilation [6]. 
Reductions/increases in amplitude of the PAT signal provide 
quantitative measures of vasoconstriction/vasodilation. 

Existing cardiovascular control models provide 
characterizations at various levels of detail of the closed-loop 
dynamics that underlie HR and ABP variability. However, to 
our knowledge, none has included the effect of respiration on 
peripheral vascular tone. The objective of this study is to 
develop an extended model of blood pressure variability that 
adequately captures the dynamics resulting from the 
respiratory modulation of systemic vascular resistance 
(SVR). This is accomplished through a combination of 
structured and minimal modeling approaches. We further 
show that taking this effect into account is important for 
obtaining accurate estimates of the dynamics that 
characterize the baroreflex control of SVR. 

II. METHODS 

A. Structured Model 

The starting point of this study is the structured model (A) 
shown schematically in Fig. 1. Using a simple 2-element 
Windkessel model, the model generates a pulsatile waveform 
of ABP for each cardiac cycle. Respiration, represented by 
instantaneous lung volume (ILV), modulates ABP indirectly 
through its effect on heart rate (via the RSA mechanism). 
Through changes in intrathoracic pressure, respiration 
produces mechanically-induced alterations in stroke volume 
which in turn lead to fluctuations in ABP. This mechanical 
effect of respiration (MER) is modeled as a derivative of ILV 
multiplied by a negative gain [7]. The final ABP, which 
contains these influences combined, then becomes the input 
to the model components that represent baroreflex control of 
HR and SVR. For greater consistency of comparison with our 
experimental results that were derived from PAT 
measurements, we will quantify SVR by its inverse: systemic 
vascular conductance (SVC = 1/SVR). 

The baroreflex control of SVR is modeled as a nonlinear 
negative static gain [8] connected to a time delay of 5 
seconds [8] and a lowpass filter. The dynamically changing 
SVR output is fed into the Windkessel model in order to 
represent beat-by-beat changes in the time constant of the 
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Windkessel. The baroreflex control of HR is divided into 2 
branches: sympathetic and parasympathetic control. Each of 
these branches is modeled as a nonlinear static gain [8]. The 
output of each of these branches is combined with the RSA 
effect on HR [7]. The RSA is modeled as a constant gain that 
increased HR during inspiration and decreased HR during 
expiration. The combined HR output is used as the input to 
the sinoatrial (SA) node.  

The dynamics of the SA node are divided into 
sympathetic and parasympathetic components. Both branches 
are modeled as lowpass filters with constant gains [7]. In 
addition, a time delay of 1.7 seconds [7] is added to the 
sympathetic branch to mimic latency in the sympathetic 
response. The outputs from each branch in the SA node are 
combined to obtain the final HR. This HR then enters the 
“properties of myocardium” block, which represents the 
influence of the duration of pulse interval on stroke volume. 
A longer pulse interval would lead to an increase in the next 
stroke volume and thus pulse pressure (PP) [9]. The new PP 
is then fed into the Windkessel model for generation of the 
next cardiac cycle. 

 

Figure 1. Simulation Model A 

B. Minimal Model 

A minimal modeling approach is employed for 
quantifying the effect of respiration on SVC using 
experimental data. The database consists of short-term 
recordings of ILV, RRI, MAP and PAT measured in 10 
human subjects in the supine posture. The amplitude of the 
PAT signal is used to represent changes in SVC.  

We propose two hypotheses: 1) fluctuations in SVC due 
to respiration are produced by respiratory-modulated ABP 
and 2) in addition to ABP, respiration also directly produces 
fluctuations in SVC. Based on the first hypothesis, the 
fluctuations in SVC (ΔSVC) can be modeled as a one-input 
model, relating fluctuations in beat-averaged ABP (ΔMAP) 
to ΔSVC through a baroreflex control of vascular 
conductance (BVC). The mathematical representation of the 
one-input model is  
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The second hypothesis, however, requires 2 dynamic 
components to characterize ΔSVC. The first component is the 
BVC and the second component represents respiratory-
vascular conductance coupling (RVC), relating changes in 
ILV (ΔILV) to ΔSVC. 
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In both cases, PAT amplitude is employed as a measure 

of SVC. BVCh and RVCh represent the impulse responses of 

BVC and RVC, respectively; BVCT and RVCT  represent the 

time delays of BVC and RVC, respectively; M represents the 

memory of the system; and SVC  represents other fluctuations 

in SVC that cannot be explained by the model. Both minimal 
models are assumed to be linear and time-invariant. 
Therefore, complete characterization of BVC and RVC can 
be accomplished by identifying the impulse responses. To 
estimate an impulse response, we employ a kernel expansion 
technique as it greatly reduces the number of parameters to 
be estimated. Meixner functions are employed as the basis 
functions such that each impulse response can be represented 
as a weighted sum of the Meixner basis functions (MBF) [9]. 
Each impulse response is assumed to have duration of 30 
sampling intervals (i.e. M=30) where each sampling interval 
is 0.5 seconds. Using this technique, each impulse response is 
represented as 
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represents the total number of MBF used in the expansion of 
the impulse response. 

Using (3), we can rearrange (1) and (2) such that ΔSVC is 
equal to the summation of the expansion coefficient times the 
convolution of the MBF with the inputs [10]. The unknown 

expansion coefficients 
BVC
jc  and 

RVC
jc can be estimated 

using least-squares minimization. The least-squares 
minimization process is repeated for a range of values of 

delays ( BVCT from 2 to 8 seconds and RVCT from 0 to 6 

seconds), the order of generalization (n from 0 to 5), and the 

Meixner function order ( BVCq and RVCq from 2 to 8). For 

each combination of the model parameters, the minimum 
description length (MDL) [11] is employed as a measure of 
the quality of data fitting. 
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RJ  is the variance of the residual errors between the 

measured and the predicted output. The total number of 
parameters is the total number of unknown coefficients 
needed to be estimated. The optimal set of parameters is 
selected based on the global search for minimal MDL. Once 
the expansion coefficients are computed, the impulse 
response can then be obtained using (3). 
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C. Incorporating RVC into the Simulation Model 

The sigh-vasoconstriction block is incorporated into the 
simulation model A (Fig. 1). This block consists of a constant 
gain and a representative RVC impulse response obtained 
from the two-input minimal model. ILV is the input of the 
sigh-vasoconstriction block and its output, ΔSVR due to 
changes in ILV, is obtained by convolving RVC impulse 
response with ILV. This output is added to the output of the 
baroreflex control of SVC block to obtain a total SVC. The 
total SVC is then inverted to SVR before being fed into the 
Windkessel model. The extended simulation model (B) is 
shown in Fig. 2. 

 

Figure 2. Simulation Model B 

III. RESULTS 

Predictions from the simulation model A and B are 
compared to the experimental data of one subject in Fig. 3. 
Simulation model A shows that RRI shortened during the 
sigh due to the RSA mechanism. Consequently, MAP 
increases in response to the reduction in RRI. This increase in 
MAP in turn causes the lengthening in RRI through 
baroreflex control of HR. Also, approximately 5 seconds 

 

Figure 3. Data segments during a sigh from the experimental data (left panel) 
compared with simulation  outputs of Model A (middle panel), and Model B 

(right panel). 

after the initiation of the sigh, SVC increases, indicating 
vasodilation response. Model A is able to reproduce all the 
effects that are included in the model as expected and is able 
to mimick some features of the response observed in the 
experimental data. However, one obvious discrepancy 
between the simulated output from the Model A and the 
experimental data is the SVC response. While the 
experimental data show a transient vasoconstriction 
following the sigh, Model A, however, predicts a 
vasodilation response. 

The sigh-vasoconstriction response, as characterized by 
the RVC impulse response, is estimated from the 
experimental data in an open-loop manner as described in 
Section B. A representative RVC impulse response (Fig.4) 
derived from application of the minimal model to 10 sets of 
human data is incorporated into the sigh-vasoconstriction 
block of Model B. With the simulation model operating in a 
closed-loop fashion, model B demonstrates the ability to 
simulate the patterns of cardiovascular variability observed in 
real data, including the sigh-vasoconstriction response as 
shown in Fig. 3 (right panel). 
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Figure 4. Representative RVC impulse response 

Fig. 5 illustrates normalized power spectra of the sigh 
data segments from the experimental data obtained from one 
subject, and from simulation Models A and B. The power 
spectra show that RRI, MAP, and SVC from both 
experimental data and simulation models exhibit oscillations 
at the respiratory frequency. RRI, in particular, shows strong 
coupling with respiration. In addition, these signals also
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Figure 5. Normalized power spectra of the data segments during a sigh from 
the experimental data (left panel), the simulation model A (middle panel), 

and the simulation model B (right panel). 

IL
V

 (
L

)

0

1

2

3

R
R

I (
m

s
)

600
800

1000
1200
1400

M
A

P
 (

m
m

H
g

)

90

95

100

105

110

0 20 40 60 80

S
V

C
 (

a
u
)

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 0 20 40 60 80

Experiment Model A Model B

Time (s)

3827



  

exhibit low-frequency oscillations at around 0.1 Hz. MAP 
and SVC shows prominent low-frequency  components 
compared to the power at the respiratory frequency. All 
power spectra of the simulated signals from the Model A 
exhibit pronounced respiratory frequency component. The 
MAP power spectra from both simulation models show much 
more prominent peaks at the respiratory frequency compared 
to the lower frequencies, in contrast to the power spectrum of 
MAP obtained from the experiment. This is likely due to 
other influences on MAP not captured by the rather simple 
simulation models. However, the SVC power spectrum of the 
Model B is more similar to that of the experimental data in 
exhibiting a more prominent low-frequency component 
relative to the respiratory frequency component. 

The one-input minimal model is applied to the data 
generated from the simulation model B. We find that 
although the model prediction fits the actual output 

reasonably well, the estimated BVCh using the one-input 

model shows an opposite response to the “true” BVCh , the 

impulse response of BVC in the simulation model B (Fig. 6). 
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Figure 6. Estimated hBVC from data generated by simulation model B 
using one-input minimal model 

IV. DISCUSSION 

In the present study, we have employed a combination of 
structured and minimal modeling approaches to develop a 
closed-loop model of blood pressure variability that would 
adequately capture the dynamics resulting from the 
respiratory modulation of SVR. In particular, we were able to 
accurately predict the dynamics of the sigh-vasoconstriction 
reflex only after incorporating the RVC component into the 
model. Furthermore, since RVC tends to generate an opposite 
response to BVC, it is important to take into account of the 
respiratory modulation of SVR in order to obtain an accurate 
estimation of BVC. Otherwise, the estimated BVC can 
appear to exhibit an opposite response to what is generally 
expected. We have confirmed this result in further work not 
presented here due to limitations of space. 

Although this simulation model developed in this study is 
able to reproduce the responses similar to what would be 
expected in a physiological system under normal conditions, 
it does not include the effects of other regulatory influences 
that also contribute to short-term blood pressure variability, 
such as local vascular factors, cardiopulmonary reflexes, 
chemoreflexes, and the effects of breath-to-breath variability 
in respiratory tidal volume and breath period. The dominating 
peak at the respiratory frequency in the simulated MAP (Fig. 
5) suggests that the relative contributions of the RSA 
mechanism and the respiratory modulation of stroke volume 

in Model B to the fluctuations in MAP may have been overly 
weighted in our simulations. 

Another point that should be addressed is the use of the 
amplitude of PAT signal as a measure of SVC. In this study, 
PAT has shown to be a useful device in detecting the 
vasoconstriction response. However, it does not directly 
measure SVR but rather the changes in the blood volume at 
the fingertip. The changes in SVR are then inferred from the 
changes in volume but whether the relationship between SVR 
and amplitude of PAT is linear or not has yet to be 
determined. In addition, PAT provides only relative 
measurements of vasoconstriction in the finger; this 
complicates comparisons of PAT measurements across 
subjects.  

V. CONCLUSIONS 

The respiratory modulation of SVR is an important 

mechanism that contributes to blood pressure variability. 

Moreover, taking this respiratory modulation effect into 

account is essential for accurately estimating the dynamics 

of the baroreflex control of SVR. 
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