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Abstract— Given the high mortality rate, liver cancer is
considered to be a difficult cancer to treat. Consequently, alter-
native strategies are being developed such as radiofrequency
ablation (RFA). RFA applies radiofrequent currents leading
to local heating of the tumoral tissue. Accurate numerical
modeling contributes to a better knowledge of the physical
phenomena and allows optimizations. In this work, the bipolar
radiofrequency ablation technique is explored followed by an
optimization by means of pulsed currents. Numerical results
clearly show the larger ablation zones due to the pulsed
currents. Hence, pulsed bipolar RFA increases the efficacy and
has the potential to be incorporated in clinical practice.

I. INTRODUCTION

Conventional therapies for cancer are mostly a combi-

nation of surgery, chemo- and radiotherapy. These cancer

therapies are not always an effective treatment, in particular

when treating liver cancer, one of the most occurring forms

of cancer. Primary liver tumors, so-called hepatocellular

carcinoma (HCC), occur approximately in 749000 cases per

year [1]. Unfortunately, the five year survival rate for HCC is

only 12% [2]. Therefore, alternative strategies are explored

so to increase this survival rate.

Thermotherapy is such a recently developed technique that

consists in applying heat in the tumoral tissue. The tissue can

be heated by means of cryoablation, microwave ablation or

radiofrequency ablation [3]. Radiofrequency ablation (RFA)

heats the tissue through the use of one or multiple electrodes

injecting radiofrequent currents. Contrary to previous studies,

we focus on bipolar RFA devices. In a bipolar configuration,

we use two electrodes that are driven by a current source

(Fig. 1). This technique is not yet well understood and

engineering research is needed so to increase the efficacy

of this method.

This study presents numerical methods for a bipolar RFA

configuration. The numerical model consists of two coupled

subproblems: the electrical and thermal subproblem. First, a

Poisson differential equation is solved in order to simulate

the electrical fields originating from the injected currents.

Secondly, the thermal phenomena are characterized by the

so-called Pennes bioheat equation for given heat sources

and heat sinks. Both numerical methods are finite difference

based.

Furthermore, we propose the use of pulsed currents to

improve the efficacy of the bipolar configuration. Our propo-

sitions are supported by the numerical results.
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Fig. 1. Schematic representation of a bipolar configuration for RFA.

II. METHODS

A. Numerical model

The numerical model of RFA consists of two subproblems

describing the electrical and the thermal physical phenomena.

In addition, these two subproblems are strongly coupled to

each other.

The electrical phenomena in RFA are modeled by express-

ing the continuity equation resulting in a Poisson equation:

∇ · [σ (~r)∇φ (~r, t)] = I0 δ (~r − ~r1)− I0 δ (~r − ~r2) (1)

Here φ represents the electrical potential (V) and σ is the

electrical conductivity
(

S
m

)

, as a function of space (~r) and

time (t). I0 is the volumetric current density
(

A
m3

)

caused

by the electrodes at places ~r1 and ~r2. Additionally, we use

a Dirichlet type boundary condition for (1). The resulting

electrical field ~E = −∇φ
(

V
m

)

generates Joule heating
(

W
m3

)

:

qE = σ (~r, T (~r, t))
∣

∣

∣

~E (~r, t)
∣

∣

∣

2

(2)

The thermal subproblem consists in calculating the tem-

perature distribution during an RFA treatment. RFA intro-

duces qE as an additional heat source next to the biological

heat transfer model of Pennes [4], [5]:

ρ (~r) c (~r)
∂T (~r, t)

∂t
= ∇ · [k (~r, T (~r, t))∇T (~r, t)]

−α (~r, t)ωρbcb (T (~r, t)− Tc) + qE (3)

The left-hand side of this partial differential equation consists

of the temperature T (K), the mass density of the tissue ρ
(

kg
m3

)

and the specific heat capacity of the tissue c
(

J
kg·K

)

.

The right-hand side contains the different heat sources and

sinks. The first term describes the traditional heat conduction

with the thermal conductivity k
(

W
m·K

)

. The second term is

a measure for the effect of blood perfusion. The blood and
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TABLE I

BLOOD PROPERTIES [6].

Symbol (unit) Value

ω
(

s−1
)

0.0064

cb
(

J kg−1K−1
)

4180

ρb
(

kg m−3
)

1000

TABLE II

MATERIAL PROPERTIES OF HEALTHY AND TUMORAL LIVER TISSUE [5].

Symbol (unit) Healthy tissue Tumoral tissue

ρ
(

kg m−3
)

1016 1016

c
(

J kg−1 K−1
)

3500 3500

σ0
(

S m−1
)

0.36 0.45

σ1
(

K−1
)

0.015 0.015

k0
(

W m−1 K−1
)

0.53 0.53

k1
(

W m−1 K−2
)

0.00116 0.00116

tissue material properties in this study are summarized in

table I and II.

In order to obtain a correct interpretation for thermother-

apy, we employed an Arrhenius model for the thermal

damage caused by RFA [7]:

α (~r, t) = exp



−

t
∫

0

Ae
−

∆Ea

R·T(~r,t′) dt′



 (4)

with the gas constant R, frequency factor A
(

2.984 · 1080 s−1
)

and ∆Ea

(

5.064 · 105 J mol−1
)

as

the activation energy barrier [7]. The survival rate α can be

interpreted as the concentration of living cells at a certain

time compared to its initial concentration. Traditionally,

α in (3) is set to 1, whereas we modulate the Pennes

bioheat equation with α since the effect of blood perfusion

decreases when the tissue is thermally damaged.

Note that both the electrical conductivity σ and the thermal

conductivity k are temperature-dependent. The electrical

conductivity can be expressed as [5]:

σ (T ) = σ0 · [1 + σ1 (T − T0)] (5)

The values of σ0 and σ1 are included in table II. Because of

(5), the output of the thermal subproblem, i.e. the temperature

T , influences the electrical conductivity which acts as an

input of the electrical subproblem. The thermal conductivity

is modeled as follows [5]:

k (T ) = k0 + k1 (T − T0) (6)

The values of k0 and k1 are both included in table II

as well. Since k is a part of the first term of (3), this

leads to an entanglement of the input and output of the

thermal subproblem. On the other hand, the output of the

electrical subproblem, i.e. the electrical potential φ, causes

Joule heating qE acting as an additional heat source in the

thermal subproblem: again coupling arises. Fig. 2 illustrates

how the different parts of the model are entangled to each

other resulting in a complex overall numerical model.

Thermal subproblem 
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eq. (1) 
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Fig. 2. Schematic overview of the entanglements of the numerical model
of RFA.

B. Numerical methods

Equations (1) and (3) are solved numerically by the finite

difference method. A central approximation of the derivatives

is performed on a regular cubic grid. The finite difference

grid can originate from magnetic resonance images where we

associate a certain material property to each voxel. This can

be processed using common software packages e.g. SPM8

[8]. However, we can also work with computer-generated

geometries to test our numerical methods.

The differential operators of the Poisson equation (1) are

approximated by finite difference operators, e.g.:

∂2V

∂x2

∣

∣

∣

∣

i

≈
1

h2x
(V (xi+1)− 2V (xi) + V (xi−1)) (7)

which is a central approximation on a regular cubic grid

with spacing hx. By means of analogous approximations,

the left-hand side of (1) in a certain grid point can be

expressed by the electrical conductivities and the potentials

in the grid point and its six nearest neighbors [9]. Following

the approach of [9], the original Poisson equation is thus

transformed in a system of linear equations:

[A] · [Φ] = [B] (8)

where A only depends on the electrical conductivities and the

grid spacing, Φ contains the unknown electrical potentials

and B contains the two current sources of bipolar RFA.

Due to the sparsity corresponding with the finite difference

approach, we are able to solve this system by means of

the Preconditioned Biconjugate Gradient Stabilized Method

(Preconditioned BiCGSTAB) [10]. This has proven to be a

computationally efficient and stable method [10].

The thermal model (3) consists of a time-dependent partial

differential equation of the following type:

dT

dt
= f (t) (9)

To solve this equation, we use the modified midpoint

method. This method calculates the temperature at a cer-

tain moment in time t + H based on the value at t:
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(tstart → tnext = tstart +H). We divide this time period H

in N equidistant substeps with time difference ∆t = H
N

:

[t0 = tstart t1 . . . tN−1 tN = tnext] (10)

The first step of the modified midpoint method is executed

as follows:

T (t1) = T (t0) + ∆t f (t0) (11)

The following steps have a different formulation:

T (tn) = T (tn−2)+2∆t f (tn−1) ∀n ∈ {2, . . . , N} (12)

At the end of each time step a Gragg-smoothing is performed

to damp the oscillating errors [11]:

T (tN ) =
1

2
[T (tN ) + T (tN−1) + ∆t f (tN )] (13)

Note that for the calculation of (3), the function f of (9) still

contains spatial derivatives. Similar to the numerical method

of the electrical model, we use the central approximation of

the derivatives on the same regular cubic grid.

III. PULSED CURRENTS

So to increase the efficacy, i.e. the control of size and

shape of the ablation zone, we propose the concept of pulsed

currents. The current is switched on until the maximum

temperature in the liver reaches 80 ◦C. Next, the current is

switched off during a fixed period, the switch-off time τf .

The amplitude of the applied current profile is graphically

represented in Fig. 3.
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Fig. 3. Amplitude of pulsed currents with a fixed switch-off time τf .

The longer the switch-off time τf , the wider the temper-

ature distribution in space and thus the larger the ablation

region. However, the absolute temperature will decrease as

well resulting in less thermal damage. Consequently, a trade-

off is present. Our numerical methods allow to calculate the

influence of the different switch-off times on the thermal

damage for fixed needle positions.

IV. RESULTS AND DISCUSSION

Using the developed numerical methods we are able to

perform numerical experiments on tessellated geometries of

101 × 101 × 101 cubic voxels with a spatial discretization

of 1mm. A cross section of a computer-generated geometry

is depicted in Fig. 4. Each color represents a different tissue

which is indicated on the figure.

To assess the influence of pulsed currents, we will first

study bipolar RFA in the absence of these pulsed currents.
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Fig. 4. Cross section of a computer-generated geometry.

The numerical methods allow to investigate the effect of the

distinct material parameters. Fig. 5 illustrates the effect of the

temperature-dependent electrical conductivity σ of (5). Here,

the temperature variation of one voxel in time is depicted

in two seperate cases: a temperature-independent σ (σ1 =
0K−1) and a temperature-dependent σ (σ1 = 0.015K

−1).

The ascending limb of the two curves is due to the qE heat
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Fig. 5. Comparison of the temporal temperature profile between a geometry
with a temperature-independent σ and a temperature-dependent σ.

source of (3), whereas the descending limb takes places when

no current is applied. In the latter case the dominating effects

are described by the first two terms of (3). Fig. 5 clearly

illustrates the importance and the non-negligible effect of

the temperature-dependent σ.

Another material property is studied in Fig. 6. This figure

shows the temperature profile at a fixed moment in time

along the line that connects the two needles in the cross

section of Fig. 4. We observe that the bipolar RFA technique

is very local, i.e. the temperature rise due to the injection

of currents is constrained to a small region of the order

of millimeters. This figure also illustrates the influence of

inhomogeneity (healthy tissue with tumor versus completely

healthy tissue) of material parameters on the temperature

distribution.
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Fig. 6. Comparison of a temperature profile in the case of a geometry with
a tumor and without a tumor.
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To overcome the local behavior and to have more control

over the size and shape of the ablation zone, we apply

pulsed currents with different fixed switch-off times. Large

differences are present between the various switch-off times

as depicted in Fig. 7. Here the survival rate α is numerically

determined in the center of the geometry at equal distance of

both needle tips which is the best point to assess the locality

of the therapy modality. Clearly, there is an optimal switch-

off time (in this case τf = 0.5 s) which reduces the survival

rate of the tumoral tissue compared to the other switch-off

times. Optimizing this switch-off time thus contributes to a

more efficient treatment.
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Fig. 7. Survival rate as function of the current injection time in the center
of the simulation environment.

Fig. 8 illustrates the thermal damage in the central cross

section of a smaller geometry (51 × 51 × 51 voxels) at

different number of pulses with the optimized switch-off

time. In the beginning, the ablation zones are restricted to

the regions close to the needle. Due to the influence of an

optimized switch-off time, a temperature build-up arises in

the intermediate non-ablated zone: the ablation zones can

overlap with each other. This overlap increases when the

number of pulses increases. After 50 pulses the individual

ablation zones disappear. This eventually results in one large

cylindrical ablation zone when the amount of pulses is

augmented. Our concept could help to treat larger tumors

with an increased efficacy and thus has the potential to

be incorporated in clinical practice as a computer-supported

bipolar RFA treatment.
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Fig. 8. Spatial distribution of the survival rate in the central cross section.

V. CONCLUSIONS

This work presents numerical methods for the inter-

pretation of bipolar RFA. The numerical model consists

of two subproblems describing the electrical and thermal

phenomena. Both problems are simultaneously solved by

means of a finite difference method. Based on the numerical

results, bipolar RFA gives rise to a very local ablation

region. Improvement of bipolar RFA is provided by using

pulsed currents with fixed switch-off times. Due to the large

differences between different switch-off times, an optimal

switch-off time can be identified for each patient geometry,

material parameters and needle positions. Numerical results

confirm that the current profile with the optimal switch-

off time leads to a larger ablation zone. Consequently, the

computer-supported bipolar RFA increases the efficacy of the

treatment of liver cancer.

In the future, we will perform ex-vivo experiments to

confirm our concept of pulsed currents. Furthermore, partic-

ular attention will be paid to study this concept in a needle

configuration that is applicable in clinical practice.
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