
  

 

Abstract—We present techniques for segmenting the middle 

phalanx of the middle finger in digital radiographic images 

using deformable models and active shape models (ASMs). The 

result of segmentation may be used in the estimation of bone 

mineral density which in turn may be used in the diagnosis of 

osteoporosis. A technique for minimizing user dependence is 

described. The segmentation accuracy of the two methods is 

assessed by comparing contours produced by the algorithms to 

those produced by manual segmentation, using the Hausdorff 

distance measure. The ASM technique produces more accurate 

segmentation. 

I. INTRODUCTION 

Osteoporosis is a skeletal disease characterized by low 
bone mass and micro-architectural deterioration of bone 
tissue, with a consequent increase in bone fragility and 
susceptibility to fracture [1]. It is diagnosed by measuring 
bone mineral density (BMD) and comparing it with the mean 
of a sex-matched, young and healthy group. Dual energy X-
ray absorptiometry (DEXA) is the most common technique, 
and is considered the gold standard, for the measurement of 
BMD due to its low radiation dose and proven ability to 
predict fracture risk [2-4]. The World Health Organisation 
(WHO) definition of osteoporosis is based on spine, hip or 
forearm DEXA measurements of BMD and suggests that 
BMD measurements should be taken at these skeletal sites 
since they are the most common sites for osteoporotic 
fractures. However, osteoporosis affects the entire skeleton 
[5] and any skeletal site can be used to evaluate the initial 
fracture risk for the common fracture sites [6-7]. The hand, 
unlike the spine and hip, is far from organs with higher 
susceptibility to the effects of ionizing radiation and 
therefore BMD measurement taken in the hand would result 
in reduced effective dose. The phalanges are a particularly 
useful site because bone there is surrounded by little soft 
tissue, which may result in less accurate BMD 
measurements. Assessment of phalangeal BMD by DEXA or 
radiographic absorptiometry (RA) may have long-term value 
in predicting the risk of both hip and spine fracture [7]. 
DEXA has been shown to be a useful and accurate method 
for measuring BMD in hand bones [8-10] and phalangeal 
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DEXA is potentially useful for clinical diagnosis of 
osteoporosis [9].  

Precise segmentation of the region of interest (ROI) is 
crucial for correct and accurate BMD measurements using 
DEXA [11]. Region- [12], classification- [13-14] and 
threshold-based [15] segmentation techniques have been 
used to segment various bones in radiographic images. We 
apply active shape models (ASM) [16] and deformable 
models [17] for segmentation of the middle phalanx of the 
middle finger in digital radiographic images of the left hand. 
Both methods have been employed successfully in the 
segmentation of the middle phalanx of the middle finger in 
hand images [9; 18]. We introduce a technique that fully 
automates the segmentation for a deformable model and 
requires minimal user interaction for an ASM. We use the 
Hausdorff distance to assess the accuracy of the two methods 
compared with manual segmentation. 

II. METHODS 

A. Materials and X-ray scanning 

All images were taken using the Lodox Statscan digital 
radiographic machine (Lodox Systems, South Africa). The 
tube settings used for all scans was 100kVp and 50mA. The 
scan area was from just below the proximal interphalangeal 
joint to the tip of the middle finger. Images were captured 
and saved in DICOM format with 14bit depth and a 
2100×1990 pixel size.  

B. Preprocessing and automatic location of ROI 

The first stage in the processing of the images was to 
enhance the contrast using a histogram equalisation 
technique. The second stage involved automatically locating 
the middle finger in the image and approximation of the 
centroid of the middle phalanx. The image was thresholded 
using Otsu’s method [19] and at this point, all fingers are 
detected. In a normal subject, the middle finger would be the 
largest and therefore the largest detected object is assumed to 
be the middle finger. The finger is then automatically re-
oriented in the image so that it is approximately parallel to 
edge of the image. Pixel values in each column are summed 
and the column with the highest sum gives the approximate 
position of the midline through the middle finger since this is 
expected to have the highest number of bone pixels as shown 
in Fig. 1. Assuming that the middle finger covers more than 
half the length of the image, we use a pixel that is located at 
the halfway mark of the column with the highest sum as the 
seed point for a region growing algorithm to identify all bone 
pixels. Summing row pixel values in the new image with 
non-zero values for bone pixels yields a profile with two 
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distinct sharp transitions as shown in Fig. 2. A search for the 
sharp changes of grey level starting from the seed point in 
both directions in the x-direction is conducted in order to 
find the approximate borders of the bone in this row. The 
mid-point between the bone borders at this level is x-
coordinate of the middle point of the bone. The length of the 
middle phalanx at this x-position is found from the image 
containing bone pixels only; the halfway point is the y-
coordinate of the middle point of the bone. 

 

 

 

 

 

C. Deformable Model-based Segmentation 

A parametric deformable model was chosen over a 
geometric one due to the computational complexity of the 
latter. A Lagrangian formulation is used for explicitly 
representing parametric models as parameterized curves 
while Eulerian formulation is used for implicitly representing 
geometric deformable models using level sets of 2-D 
distance functions. A parametric deformable model can be 
mathematically defined as follows: 

[0,1]  s   y(s))(x(s), =V(s)   (1) 

where s can be any parameter, the most commonly used 
parameter is arc length. The model is represented by two 
vectors that contain the spatial coordinates of points on the 
contour. A parametric model minimises the weighted sum of 
internal energy of the model and external energy computed 
from image data. This yields internal and external forces that 
drive the model towards image borders during evolution. To 
implement the parametric model, we used a dynamic force 
formulation for the model [20] and we expressed it as a 

function of arc length and time. The following partial 
differential equation (PDE) was used for evolving the model: 
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where s is the arc length from an arbitrary point to all the 
other points on the curve; t is the time, α and β are constants 
that regulate the elasticity and rigidity of the model 
respectively; fe is the external force calculated from image 
data; fb is the balloon force that augments the external force 
in driving the model towards image borders; κ and λ are 
weighting parameters that determine the contribution of the 
external force and the balloon force respectively. The 
external force is computed as the negative gradient of the 
Gaussian filtered image. In order to start the evolution of the 
deformable model, empirically-determined weighting 
parameters for the model and the image forces as well as the 
initial position of the model are specified when calling the 
evolution function. The model was initialized as a circle 
centred at the approximated middle point of the bone of 
interest, with a radius equal to the width of the bone at this 
pixel level as shown in Fig. 3. 

 

 

D. Active Shape Model-based Segmentation 

ASMs use statistical models derived from example 
shapes for a particular object of interest. The ASM is trained 
by manually selecting landmarks describing the target shape 
in training images. A mean shape is computed through 
alignment, scaling, rotation and translation of the example 
shapes. The mean shape is then applied in test images and 
manipulated to find edges of an object with similar shape. 

1) Training  

We used excised bones for ASM training in order to 
avoid needless radiation exposure to participants. The 
museum in the Department of Human Biology at University 
of Cape Town provided 96 excised bones. The bones were 
divided into a training set of 30 bones for computing the 
mean ASM shape and a test set of 66 bones. Images of the 
bones were acquired as described at the beginning of Section 
II. Landmarks for the ASM were placed at the prominent 
features of the bone and two additional points were added 
between each pair of prominent features so that 46 points 
were used to fully describe the bone shape as shown in Fig 4. 

The following algorithm was used to build the statistical 

shape model: 

1. Obtain landmark coordinates for each shape in the 

training set using manual annotation. 

Figure 1. Summation of image columns (y-axis) against column 

number (x-axis) - dashed line represents the position of the peak 

Figure 2. Summation of image rows (y-axis) against row number (x-

axis) - the dashed lines represent the position of the borders of the 

bone 

Figure 3. Initialization of the deformable model (cross 

represents estimated centre of bone) 
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2. Compute the mean normalized derivative profile for 

each landmark point and compute the covariance 

matrix of the mean normalized derivative profiles for 

each landmark. 

3. Align the shapes of the training set. 

4. Apply principal component analysis to find the 

weighting matrix to give more significance to those 

points with higher stability – these points have the 

least variation with respect to other points on the 

shape. 

5. Calculate the statistical description of the training set 

shape coordinates: 

x = xm + P.b (3) 
where xm is the mean shape, P is the matrix of the most 

significant eigenvectors of the covariance matrix and b is 
vector of weights. 

 

 

2) Image search  

The first step in the search for the ROI is to initialize the 
ASM in the image. The final segmentation is highly 
dependent on the quality of the initialization and a good 
initialization is obtained by aligning the centroid of the mean 
shape with the centroid of the ROI. This was achieved by 
using the approximate centroid of the bone as discussed in 
Section B. The mean shape is scaled, rotated and translated 
so that the two centroids are aligned. The initial shape is 
shown to the user superimposed on the test image and the 
user is prompted to indicate whether the initial shape is 
good, too big or too small. The initial shape is automatically 
re-scaled if necessary and the user indicates if a better 
initialization is produced. Once the user indicates that the 
initialization is good, the search may begin. Fig. 5 shows an 
example of a good ASM initialization. A multi-resolution 
search is carried out using the image pyramid technique. The 
search ensures that the final shape resembles the mean shape 
and the Mahalanobis distance is employed to measure the 
similarity between the test shape and the mean shape. 

 

 

E. Validation 

The segmentation accuracy of the two methods was 

determined by generating a ground truth through manual 

segmentation and comparing the bone contours extracted by 

the methods on a set of test images. Two graduate students 

were asked to perform manual segmentation of the test 

images under the guidance of a qualified radiographer and 

the average of the two contours was considered the ground 

truth. The Hausdorff distance measure [21] was used to 

quantify the similarity between the ground truth and the 

algorithm-determined contour in each image. The Hausdorff 

distance (HD) provides a measure of similarity between two 

sets of points and is defined as: 

 

),(),,(max(),( ABhBAhBAHD   (4) 

 

where A and B are finite point sets and h(A,B) is the directed 

Hausdorff distance from A to B. 

III. RESULTS 

The segmentation algorithms were applied to test images 
and the output of each method is a series of pixel points on 
the border of the bone of interest.  

The ASM algorithm was first tested on 66 excised bone 
images and a comparison with manual segmentation showed 
close similarity and hence accurate segmentation, with an 
average Hausdorff distance of 5.72, a minimum of 3.74 and a 
and maximum of 8.58 pixels. To test the algorithms on the 
intended data type, 15 participants were recruited and images 
of their left hands were taken since BMD measurements are 
normally taken in the non-dominant hand. Table I 
summarizes the differences between contours detected by the 
two algorithms and manual segmentation while Fig 6 and Fig 
7 show typical examples of the contours. 

TABLE I.  HAUSDORFF DISTANCE FOR HUMAN SUBJECTS 

Method 
Hausdorff distance (pixels) 

Mean Minimum Maximum 

ASM 5.6(0.96) 4.1 7.9 

Deformable model 10.3(2.25) 6.6 14.7 

Standard deviation in brackets 

 
 

 

 

(a) (b) (c) 

Figure 4. ASM landmarks 

Figure 5. ASM initialization (cross represents estimated 

centre of bone) 

Figure 6. An example of deformable model-based segmentation: a) test 

image b) detected contour c) detected contour (red) and manually 

drawn contour (blue) – Hausdorff distance, 6.57pixels 
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IV. DISCUSSION AND CONCLUSION 

The deformable model tends to converge far from the 
actual bone border. This can be solved by increasing the 
width of the Gaussian filter used in the calculation of the 
external image force or initialising the model outside the 
ROI. However the presence of other bones in close 
proximity to the bone of interest renders these possible 
solutions impractical as this would cause the model to be 
attracted to other bones. Even though only a small area of the 
bone is excluded by the deformable model, a great portion of 
this area is cortical bone and this is expected to distort BMD 
measurements. In contrast, the ASM tends to delineate the 
border of the bone with higher accuracy although it is also 
prone errors due to the presence of the other bones. However 
the initialization method used in this study reduces the 
chances of such errors occurring and the algorithm facilitates 
the correction of the initialization. An advantage of the 
deformable model algorithm is that it is completely 
automated and requires no user interaction. However, while 
user interaction is mandatory for the ASM algorithm, only 
one click of the mouse (indicating that the initialisation is 
good) is necessary in most cases due to the degree of 
automation for initialization; out of the 15 test images, only 
two images required correction for the initialization and no 
correction was required for the bone test images. The 
average Hausdorff distances obtained on the excised bones 
(5.7 pixels) and on human subjects (5.6 pixels) are almost 
equal and therefore the bone-trained ASM is suitable for 
segmenting actual hand images. 

Gulam et al. [9] employed a deformable model for 
segmenting the middle phalanx of the middle finger and 
while they expressed satisfaction with the results, they did 
not validate the accuracy of the segmentations. Also, their 
deformable model was initialized by manually selecting 
points on the border of the bone. Unlike our automated 
technique, their method of initialization is time-consuming. 
Sotoca et al. [18] have used an ASM to segment the middle 
phalanx from hand radiographic images. However, they do 
not validate the accuracy of the segmentation but claim 
success based on results of BMD measurements based on the 
ASM segmentation. Their algorithm also relied on the user 
defined input for initialisation of the ASM. The result of 
ASM segmentation is highly dependent on initialization and 
having a user-defined starting point introduces subjectivity in 
the results. This is a drawback that has been addressed in this 
study. 

In conclusion, the ASM technique is more accurate than a 

deformable model for segmenting the middle phalanx of the 

middle finger in digital radiographic images. The output of 

the segmentation algorithm can be used in estimating the 

BMD which in turn can be used to determine fracture risk 

and diagnosis of osteoporosis. 
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(a) (b) (c) 

Figure 7. An example of ASM-based segmentation: a) test image b) 

detected contour c) detected contour (red) and manually drawn 

contour (blue) – Hausdorff distance, 4.53pixels 
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