
  

 
Figure 1: Steps involved in the automated parasitaemia determination 

algorithm 

 

 

Abstract— The current gold standard of malaria diagnosis is 

the manual, microscopy-based analysis of Giemsa-stained blood 

smears, which is a time-consuming process requiring skilled 

technicians. This paper presents an algorithm that identifies 

and counts red blood cells (RBCs) as well as stained parasites in 

order to perform a parasitaemia calculation. Morphological 

operations and histogram-based thresholding are used to 

extract the red blood cells. Boundary curvature calculations 

and Delaunay triangulation are used to split clumped red blood 

cells. The stained parasites are classified using a Bayesian 

classifier with their RGB pixel values as features. The results 

show 98.5% sensitivity and 97.2% specificity for detecting 

infected red blood cells. 

I. INTRODUCTION 

In 2010 the World Health Organisation reported that 
malaria caused an estimated 655000 deaths from 216 million 
cases, most of which occurred in sub-Saharan Africa. The 
current gold standard of diagnosis is the analysis of blood 
smears by light microscopy [1]. This is used for parasitaemia 
determination (i.e. the percentage of infected cells) as well 
as species and life-cycle identification. This process can be 
very sensitive and specific but requires a skilled technician. 
Microscopic analysis is also time-consuming and is prone to 
inaccuracy and inconsistency [2]. 

Automated image analysis for parasite detection and 
parasitaemia calculation could reduce the burden of skilled 
technicians as well as provide objectivity and repeatability 
of results [3]. Such automated methods need to have the 
performance of a skilled technician and cater for a variety of 
images and problems such as uneven illumination, artefacts 
in the images and clumped red blood cells. Current research 
involves a pre-processing stage that optimises the input 
image for automation, the extraction and segmentation of red 
blood cells and the detection of stained pixels. These 
operations can be performed by morphological operations, 
thresholding and statistical classification using morphology, 
texture and colour [4, 5, 6]. 

We use morphological and statistical classification to 
detect malaria in blood smears by identifying and counting 
red blood cells and Plasmodium parasites. Morphological 
operations and histogram-based thresholding are used to 
extract the red blood cells (RBCs) and boundary curvature 
calculations and Delaunay triangulation are used for splitting 
clumped RBCs; these methods were proposed by Berge et al 
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for RBC detection, with an absolute error rate of 2.8% with 
manual detection as the gold standard [4].  

Parasites in blood smears are stained by Giemsa and 
colour classification can be used to determine which pixels 
in an image are stained or not. Pixel classification based on 
colour was used by Khutlang et al [7] to detect tuberculosis 
in Ziehl-Neelsen stained sputum smears. Tek et al [6] 
performed parasite detection and species and life-cycle 
identification by making use of multi-class classification 
methods to identify stained pixels. A modified K-nearest 
neighbour (KNN) classifier was used to detect stained pixels 
for the purpose of parasite/non-parasite classification. This 
research also investigated the use of Fisher linear 
discriminant (FLD) and back propagation neural network 
(BPNN) classifiers but found the modified KNN classifier to 
have the best performance with an overall accuracy of 
93,3%, 72.4% sensitivity and 97.6% specificity. We use a 
linear Bayesian classifier to identify stained pixels. 

Figure 1 shows the steps taken in the algorithm to 
identify and count the RBCs and the parasites.  

II. METHODS 

A. Image acquisition 

The algorithm was developed and tested using Giemsa-
stained thin blood smears infected with Plasmodium 
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Figure 2: Zack's thresholding algorithm for RBC segmentation 

 

 

Figure 3: RBC segmentation; left: original binary image; right: after 
iterative thresholding and border clearing 

 

falciparum that were prepared and cultured in a laboratory 
environment. Images of the slides were captured using a 
Zeiss Axioskop 2 bright field microscope (motorized 1999 
model) with a 12 V, 100 W halogen lamp, a 1.3 numerical 
aperture, and a 100x oil immersion objective. The images 
were captured with an Axiocam high resolution colour 
camera using the Axiovision imaging software (version 4.7) 
at a resolution of 1296 x 1024.  

B. Preprocessing 

The greyscale version of the RGB image is extracted and 
filtered with a median filter and morphologically closed 
using a disk-shaped structuring element. This is to smooth 
the image and remove small pixel noise. The background is 
extracted by morphologically closing the image with a disk-
shaped structuring element and this is subtracted from the 
filtered image to correct uneven illumination. 

C. RBC size estimation 

The foreground extraction and segmentaion portions of 
the algorithm are dependent on the size of the RBCs and an 
estimation of the average RBC size is required. 

Grey scale granulometry is a method that estimates the 
size of objects in an image using a series of morphological 
openings with a structuring element of a fixed shape (in the 
case of RBCs, this shape was circular) that has been used in 
studies on RBC size estimation [4, 5]. The resultant pattern 
spectrum shows the distribution of object sizes within the 
image. A peak represents a large number of objects equal in 
size to that of the corresponding structuring element. 

A filtered, grey scale version of the input image (from 
the preprocessing stage) is inverted and used for the RBC 
size estimation.  

D. Foreground extraction 

1) Determining the threshold 

The histogram of the illumination corrected image is 
bimodal, with the first peak representing the background 
intensities and the second peak, the RBC intensities. Berge 
et al. [4], extending the work of Le et al. [8] suggested 
iteratively using Zack’s thresholding algorithm to determine 
the threshold between the two peaks and extract the 
foreground. 

This method finds the point furthest from a line drawn 
that connects the two peaks (see L1 in Figure 2). Berge et al 
[4] suggested a second, more accurate threshold, found by 
using the line connecting the first threshold (T1 in Figure 2) 

to the line connecting the peaks and finding the point 
furthest from this second line (see L2 in Figure 2) resulting 
in the final threshold T2 in Figure 2. 

2) Creation of RBC binary mask 

Utilising Zack’s thresholding algorithm twice is not as 
effective in images with large clumps of RBCs. An iterative 
process is used in which the threshold is adjusted and 
imposed on the resultant clumps. This process is repeated 3 
times or until no clumps larger than 3 RBCs are found. The 
binary mask is then improved using morphological 
operations to remove small artefacts, fill unwanted gaps, 
improve RBC shape and smooth their edges [4]. 

E. Segmentation 

Once the foreground has been extracted in some cases 
there are still clumped RBCs and as such an iterative clump 
splitting process is performed. The individual cells are stored 
while the extracted clumps are split [4]. 

For each clump the boundary is extracted and its 
curvature is calculated using methods suggested in [10] and 
used in [4].      

The boundary curvature vector for each object is 
analysed for regional maxima, indicating points of concavity 
from which potential split lines will be drawn. An iterative 
process used in [4] for RBC clump splitting and inspired by 
[11, 12] is applied.  

The original individual RBCs and resultant individual 
RBCs from the clump splitting process are combined into a 
RBC binary image. Cells that were unnecessarily split are 
morphologically reconstructed and added back to the RBC 
binary image (an example of the input and final RBC binary 
image is shown in Figure 3) [4]. 

F. Stained pixel analysis 

1) Feature generation 

The original RGB image is used as the input to this stage 
of the algorithm. The red (R), green (G) and blue (B) values 
of each pixel are extracted as features in order to classify 
each pixel into one of two classes: stained or non-stained. 
Twenty one images were used to extract the data (RGB pixel 
values) to train and validate the stained pixel classifier: 
11952 non-stained pixels and 2093 stained pixels. This data 
was divided into training and validation data in the ratio 3:2 
with the validation data used for parameter tuning and 
evaluating the classifiers. Figure 4 shows the distribution of 
the RGB pixel values for the background, RBC and stained 
pixels. 
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Figure 4: Distribution of RGB pixel values in the training data 

 

 

Figure 5: Stained pixel marker 

  

Figure 6: Resultant output image with RBC and parasite count 

 

2) Pixel classification 

Using the Pattern Recognition Toolbox in MATLAB and 
following from the research by Tek et al, a K-nearest 
neighbour (KNN) classifier was investigated. This classifier 
assigns to a query pixel the most frequent class of its K 
nearest neighbours based on Euclidean distance. This is a 
simple and intuitive approach that can be easliy visualised in 
the 3-dimensional RGB space. From the training data a K 
value of 3 was found to minimise the classification error of 
the KNN classifier [6]. A linear Bayesian normal classifier 
(with the class frequencies used as the prior probabilities) 
was also investigated following from the pixel classification 
work of Khutlang et al [7].  

The linear Bayesian normal classifier was chosen due to 
its reduced computational requirements and similar 
performance to the KNN classifier. This classifier is based 
on Bayes’ rule; it minimises the probability of error in 
assigning a class to a query object and assigns a class which 
has the highest probability at that position [6].  

3) Creation of stained pixel marker 

Once each pixel in the input image is classified into the 
stained or non-stained class these labels are used to create a 
binary marker image (shown in Figure 5). This binary 
marker image is then refined by morphological operations to 
remove small pixel noise and fill holes within parasites. 

 

G. Parasitaemia calculation 

Objects touching the image border in the RBC and 
stained pixel binary images are removed as per WHO 
protocols [2].  

The RBC binary image and the stained pixel binary 
image are analysed together to eliminate parasites found 
outside a red blood cell (not considered in parasitaemia 
calculations). A final count of the RBCs in the RBC binary 
marker image and the number of infected RBCs is 
performed. In determining the parasitaemia level multiple 
parasites found in a single RBC are counted as a single 
infected RBC. 

III. RESULTS 

Twenty one images were used to train and test the 
stained pixel classifier. The performance of the KNN and 
linear Bayesian normal classifiers was tested on the 
validation data and is shown in TABLE 1. 

 

TABLE 1: PERFORMANCE OF STAINED PIXEL CLASSIFIERS 

 Sensitivity error
a
 

KNN (k = 3) 99.8 0.0012 

Linear Bayesian 99.5 0.0055 
a. classification error based on error counting, weighted by the class priors 

 

Seven slides containing thin smears of blood infected 
with Plasmodium falciparum were used as the testing set for 
the entire algorithm (a total of 42 images). Figure 6 shows 
the final output image with the RBC and parasite counts. 
The results of identifying infected RBCs (i.e. performing an 
accurate RBC and parasite count to determine parasitaemia) 
are shown in Table 2. These results are compared with those 
of Ross et al who used morphological operations and 
threshold selection techniques along with a two-stage tree 
classifier with features based on colour, texture and cell 
geometry and with the parasite/non-parasite results of Tek et 
al who used morphological operations and a modified KNN 
classifier [5, 6].  

 

TABLE 2: EVALUATION OF THE INFECTED RBC DETECTION ALGORITHM 

 Sensitivity Specificity % error
b
 

This study 98.5 97.2 1.6 

Ross et al [5] 85.3   

Tek et al [6] 83.2 96.8  
b. (|manual_count– algorithm_count|/manual_count)*100 
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IV. DISCUSSION 

This algorithm identifies red blood cells and malarial 
parasites in microscope images in thin blood smears. The 
algorithm also performs a parasitaemia calculation. The 
algorithm incorporates methods suggested by research on 
automated malaria detection as well as methods used in the 
analysis of cellular components in microscope images.  

The method of RBC detection proposed in [4] and used 
in this study is less dependent on user defined thresholds and 
intensity levels than the best performing published methods 
[8, 13]. The algorithm performs well on images of varying 
colour, RBC density and level of cluster overlap, providing 
aequate input to the classification step. Red blood cells that 
were not thresholded adequately (thus not part of the RBC 
binary image) and those belonging to clumps too big to be 
decomposed completely were not counted.  

The RBC size estimation step uses a filtered, grey scale 
version of the input image and is not dependent on the 
accuracy of the foreground extraction. It does not 
significantly improve the segmentation process compared to 
the area estimation used by Berge et al [4] which is less 
computationally intensive, but it provides a more accurate 
estimation of the RBC size as determined empirically by the 
author using the training data. 

The classification of stained pixels using the original 
RGB image is successful and not dependent on the shape of 
the histogram or a user defined threshold as with the 
intensity based thresholding methods of [4] and [5]. The 
method is also not dependent on the morphology of the 
stained objects as in [11]. The method presented here uses 
the colour of the Giemsa stain as its discriminating factor, 
mimicking a human technician. It is also robust against 
varying illumination. The training data showed significant 
separability between the stained and non-stained pixels as 
well as separability between the background and red blood 
cell pixels. 

Our algorithm, as with several others published for 
similar applications, was tested on a data set of limited 
variety with most images coming from the same source 
(laboratory, microscope and camera). Further testing should 
be performed with images from multiple sources and full 
blood samples should be tested as well in order cater for 
different in the image acquisition equipment and to better 
simulate samples collected in the field, respectively. 
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