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Abstract— The feasibility of implants for prosthetic vision has
been demonstrated by research and commercial organizations.
In most devices, an essential forerunner to the internal stimu-
lation circuit is an external electronics solution for capturing,
processing and relaying image information as well as extracting
useful features from the scene surrounding the patient. The
capabilities and multitude of image processing algorithms that
can be performed by the device in real-time plays a major
part in the final quality of the prosthetic vision. It is therefore
optimal to use powerful hardware yet to avoid bulky, straining
solutions. Recent publications have reported of portable single-
board computers fast enough for computationally intensive
image processing. Following the rapid evolution of commercial,
ultra-portable ARM (Advanced RISC machine) mobile devices,
the authors investigated the feasibility of modern smartphones
running complex face detection as external processing devices
for vision implants. The role of dedicated graphics processors
in speeding up computation was evaluated while performing a
demanding noise reduction algorithm (image denoising). The
time required for face detection was found to decrease by 95%
from 2.5 year old to recent devices. In denoising, graphics
acceleration played a major role, speeding up denoising by
a factor of 18. These results demonstrate that the technology
has matured sufficiently to be considered as a valid external
electronics platform for visual prosthetic research.

I. INTRODUCTION

In the recent decades, it has been demonstrated that visual
perception can be elicited by electrical stimulation of the
visual cortex [1], the optic nerve [2] and the eye [3]. While
there are approaches to confine image processing to the site
of electrical stimulation [4], most of the current prosthetic
device prototypes feature an external image acquisition and
computation framework to process the captured visual scene
prior to feeding it into the implanted circuitry (Fig.1). Thus,
as technology improves, the image processing part of the
implant system can be steadily upgraded without the need
for follow-up surgical intervention.

Considering the limited information that can be displayed
with current low-resolution prosthetic vision due to physical
constraints in stimulation, emphasis has to be put on im-
plementing image processing strategies which extract useful
features from the original image for final display to the
implant recipient. For orientation and navigation, promising
approaches are depth mapping and obstacle detection [5], [6].
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Regarding social interaction, the ability to recognize facial
features is of particular importance to implant recipients.
To our knowledge there are no reports of applications of
face detection in image processing for vision prosthetics.
Yet, there have been promising algorithms made available
in open-source code, namely the Viola-Jones method [7];
this algorithm could be used to detect faces in camera im-
ages and emphasize them for presentation. Thus magnified,
facial features and expressions are likely to be more easily
recognizable with low-resolution prosthetic vision.
Performing advanced image processing, the external elec-
tronics hardware and software have to be sufficiently pow-
erful, yet remain portable enough to not interfere in every-
day tasks. Previous research presented light-weight, afford-
able, wearable devices [8], [9], yet there were hardware
design-specific limitations in camera resolution, data transfer
speed between camera and processor as well as hardware
upgrade potential. Recently, it has been demonstrated that a
commercially available, portable device based on an ARM
processor was powerful enough to perform image processing
tasks that could drive a 98 electrode visual prosthesis with
meaningful data in real-time, thereby producing interpretable
visual output [10]. ARM chips are low-cost, heat- and power-
efficient alternatives to the larger-scale processor architec-
tures, making them prime candidates for use in light, battery-
powered devices such as mobile phones. As a result, in
2011, there were 7.9 billion ARM-based chips shipped, a
30% increase over 2010, with 95% of smartphones driven
by these processors [11]. Given their omnipresence and
availability, the question arises whether smartphones with
their increasingly powerful processors and integrated high-
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Fig. 1. Interaction between the image processing components. An external
camera acquires images which are processed by the portable device and
sent to the prosthetic device by means of the RF link. A monitor computer
can be used to control sampling parameters. All external components are
found in modern smartphones. From Matteucci, 2011.
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resolution cameras can be used in lieu of specialised external
electronics for vision prosthetics and perform complex image
processing in real-time (Fig. 1).

In the present paper the authors investigated the perfor-
mance of recent ARM-powered mobile phones running the
Android operating system (Google, USA) in computationally
demanding real-time face detection on still and dynamic
image material to evaluate the evolution of mobile hardware
capacity from 2010 to 2012.

II. METHODS
A. Hardware

Five different models of mobile phones were tested, repre-
senting subsequent generations of flagship portable devices
released at regular intervals. A 2010 Galaxy S (Samsung
Korea) smartphone was used to evaluate whether Android
devices are capable of running image capture and face
detection at useful speeds. They incorporate a 1000 MHz
single-core ARM Cortex-A8 processor and 512 Megabytes
(MB) RAM. The performance of the Galaxy S was compared
to a 2011 Galaxy S2 smartphone, featuring a 1200 MHz dual-
core ARM Cortex-A9 chip and 1 Gigabyte (GB) RAM, and a
2012 Galaxy S3 with a 1400 MHz quad-core ARM-Cortex-
A9 chip and 1 GB RAM, released 2012.

Two models of HTC One mobile phones (HTC, Taiwan)
were included, both running at 1500 MHz and with 1
GB RAM, differing only in CPU and Graphics Processing
Unit (GPU) type. A detailed summary of relevant hardware
characteristics can be found in Table 1.

B. Software

The operating system version running on the devices was
Android 4.1, a stable and widespread update of the Android
4 major release. For the Galaxy S2, version 4.2 was used due
to 4.1 being unavailable for this phone. On the Galaxy S, a
custom image (Cyanogenmod) of 4.1 was installed to allow
for modulating the chip speed for CPU performance tests.
Wireless signal transmission functions as well as background
applications were shut down to free resources and minimise

confounding factors for the benchmark tests.
TABLE I

HARDWARE SPECIFICATIONS OF THE DEVICES USED IN THE STUDY

Device | Galaxy S Galaxy S2 Galaxy S3 HTC One XL | HTC One X

Compone

Release Date 06/2010 04/2011 05/2012 06/2012 04/2012

Processor ARM ARM ARM Qualcomm | ARM

Type Cortex-A8 Cortex-A9 Cortex-A9 Snapdragon | Cortex-A9

S4

CPU Speed 1000 MHz 1200 MHz 1400 MHz 1500 MHz 1500 MHz

No. of Cores 1 2 4 2 4

Memory 512 MB 1GB 1GB 1GB 1GB

(RAM)

GPU PowerVR ARM  Mali- | ARM Mali- | Adreno 225 | Nvidia ULP
SGX 540 400 MP 400 MP GeForce
200 MHz 400 MHz 400 MHz 200 MHz 520 MHz

Camera Res. [ 5 8 8 8 8

(Megapixel)

Max.  Video | 1280x720 1920x1080 | 1920x1080 | 1920x1080 | 1920x1080

Capture Res.

(Pixel)

Weight (g) 119 116 133 129 130

The Eclipse Java IDE Juno (Eclipse Foundation, Canada)
software development environment, on a development desk-
top computer, was used to install face detection software and
run benchmark tests on the devices connected via USB. The
Android software development kit (SDK) was integrated into
Eclipse to permit development for Android devices.

The OpenCV 2.3.4.1 (Intel, Willow Garage, USA) image
processing library provided the face-detection algorithm used
for testing. The library is open-source, cross-platform, and
can easily be adapted to the specific needs in prosthetic
image processing. The face detector uses the Viola-Jones
method, which permits detection in real-time by combining
rapid, multiple feature detection with machine-learning meth-
ods. Due to its complexity, it is computationally intensive and
thus a good indicator of device capability.

An OpenCV control program and the face detection appli-
cation was installed on all devices and started from Eclipse.
The application retrieved a continuous video stream from the
internal rear camera, performed detection and displayed the
feed with a rectangle overlay on detected faces. The time
required in milliseconds (ms) for the algorithm to run face
detection on captured frames was saved to a log file.

2.92 FPS@640x480

3.37 FPS[@640x480

Fig. 2. Image Material Used in Benchmark Testing. A still frontal portrait
(left) and a video with dynamic head movements and turning (right), causing
the face detector to steadily lose and regain focus, were displayed at 100%
screen height. A rectangle is displayed while a face is detected. Photo by
Martin Schoeller, 2004; video from www.cbsnews.com.

C. Performance Testing

In this study, the effect of varying CPU rate with otherwise
unchanged hardware, the development of performance in
subsequent generations of smartphones and finally the effect
of hardware acceleration on performance were observed.

For benchmarking, the phones were fixed parallel to a
computer screen on which either an image or a video was
displayed (Fig. 2). The images measured 100% of the image
capture height. 1100 frames were processed and the first 100
frames discarded to allow for stabilization of data flow. The
average ms = standard deviation per frame and over multiple
sessions (n=3) was determined.

CPU clock - dependent benchmarks were run on the
Galaxy S2 phone at 640x480 pixel capture resolution with
fixed clock speeds of 500, 800, 1000 and 1200 MHz.
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The performance of one of the Galaxy S1, the S2, S3,
and the HTC One X and XL was compared by running face
detection at 640x480 pixels and native CPU clock speed.

Some newer devices feature ARM chips with inte-
grated dedicated graphics processors partially optimized for
OpenCV algorithms such as the Tegra 3 with a Geforce GPU
(Nvidia, USA), which might speed up algorithms previously
considered too demanding for vision prosthetics to usable
levels. Since face detection had not been Tegra-optimized,
we ran a computationally intensive Tegra-supported image
denoising algorithm (median blur) on the HTC One X at
960x720 pixel resolution. Processing time with disabled
versus enabled graphics acceleration was measured.

III. RESULTS
A. Effect of CPU Clock Rate on Performance

The time needed for face detection decreased with increas-
ing clock rate for both still and dynamic face recognition
(Fig. 3). A considerable fluctuation of processing times was
found at the lowest clock speed, stabilizing from 800 MHz
upwards. For still images, slightly more time was needed,
from on average 78.0+31.3 ms at the lowest tested clock
rate of 500 MHz to 24.84+5.5 ms at 1200 MHz. Processing
of dynamic faces ranged from 64.54+24.2 ms at 500 MHz to
20.1+4.9 ms at 1200 MHz.
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Fig. 3. 2011 (Galaxy S2) image processing speed throughout sessions

(n=3) as a function of CPU clock speed. Squares: still source image; circles:
dynamic source image. Standard deviations are shown as vertical bars.

B. Development of Performance 2010-2012

On the common Android 4.1.0 processing a 640x480
pixel image, the oldest 2010 model Galaxy S performed
worst, requiring on average 197.6+13.9 ms for still and
170.8£15.8 ms for dynamic images (Fig. 4), showing higher
absolute fluctuations in processing time despite running at
1000 MHz clock rate. A significant performance increase and
stabilization was found in more recent models, to 24.8+5.5
ms for still and 20.1£4.9 ms for dynamic sources was

recorded testing the 2011 model Galaxy S2. The Galaxy
S3, released 2012, reduced the time needed to 9.7+4.6 and
8.4+4.4 ms, respectively.

The HTC One X and XL phones performed similarly
and consistently well throughout all conditions. The HTC
X outperformed the XL slightly with a mean of 7.6£1.74 as
opposed to 8.8+1.9 ms.
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Fig. 4. Development of image processing speed throughout sessions (n=3)
between mid-2010 (Galaxy S1) and mid-2012 (Galaxy S3, HTC One XL
and X) running still and dynamic face tracking. Dark bars: still image; white
bars: dynamic image. Standard deviations are shown as vertical bars.

C. Effect of Hardware Acceleration on Performance

Performing the median blur algorithm with disabled
GPU acceleration, 275.4+7.0 ms were needed for still and
286.44+8.1 ms for dynamic scenes (Table 2). Turning on
the Tegra features, these times dropped to 15.3£1.0 ms and
16.6+1.2 ms, respectively.

TABLE 11
HTC ONE X IMAGE DENOISING SPEED IN MS WITH ENABLED AND
DISABLED TEGRA ACCELERATION (N=2)

egra Acceleration | Enabled Disabled
Source Image
Still Image 275.4+7.0 ms | 15.3x1.0 ms
Dynamic Image 286.418.1 ms | 16.6t1.2 ms

IV. DISCUSSION AND CONCLUSIONS

In the present paper we have shown the marked ef-
fect the evolution of ARM-based technologies has had on
performance in affordable, portable devices. Higher CPU
clock rates alone were found to speed up image processing
considerably (Fig. 3). Furthermore, the integration of ad-
vanced multi-core CPUs in conjunction with other hardware
upgrades like the doubling of RAM has led to a more
significant rise in processing speed than may be predicted by
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pure clock rate increase alone (Fig. 4). On average, within
two years, speed increased by a factor of 22 from 184.2 ms
to only 8.4 ms needed for face detection.

In order to determine whether smartphones have become
fast enough to perform image processing between capture
and display, the frame rate and thus the temporal resolution
of stimulation required for flicker-free image presentation
(flicker-fusion frequency) in prosthetic vision has to be
reviewed. While in optic nerve stimulation, a 10 Hz stim-
ulation rate has been reported to eliminate flicker [12], 40-
50 Hz were required for retinal prostheses [13]. Setting 40-
50 frames per second as an aim, i.e. displaying an image
every 20 ms, completing all processing faster than 20 ms
would eliminate lag. This value has already been undercut
by 2012 devices. It is probable that higher speeds will be
reached by next-generation devices with more RAM and
higher CPU clock rates. The final processing speeds of
a certain device will be influenced by the computational
demand and extent of image processing done in an actual
prosthesis. The dependence of frame rate on image capture
resolution will have to be further investigated.

Previous studies demonstrated image processing using
portable, customized ARM-based development kit computers
as an alternative to professional consumer hardware, how-
ever frame rates dropped considerably [8] or drastic image
downsampling was required [9]. It can be expected that the
performance of these devices has improved in the meantime;
however, principal limitations such as the low data transfer
speed from camera to the processor persist. It is due to this
that the authors suggest smartphones as ideal portable image
processors and stressed the importance of dedicated graphics
processors alongside the ARM chip.

Running considerably more demanding algorithms such as
denoising, the impact of optimized algorithms for the Tegra
chip has been shown. While face detection is already suffi-
ciently fast to not require further acceleration, future pros-
thetics desirably feature simultaneous extraction of multiple
image features, finer details or more sophisticated algorithms,
posing a challenge for reaching the frame rates required
for lag-less display. Optimizing each single algorithm to
the built-in hardware, graphics acceleration could reduce the
overall computation time below this limit.

The evolution of ultra-compact mobile phones may make
image processing in vision prosthetics increasingly light-
weight, affordable and, noteworthy, inconspicuous. The latter
addresses the concerns of prospective implant recipients that
modern prosthetic devices are more noticeable, letting them
stand out against healthy individuals; integrating common
consumer electronics serves to blur this boundary. It might
suffice installing an application on the personal phones of the
patients in order to establish a link with a newly implanted
vision prosthesis. Google’s announcement [14] to release a
minimalist spectacle-integrated device with camera and face
detection by 2014 feeds hope that in the near future external
image processors will be so discreet that blindness will be
even more masked.

In this preliminary phase of visual prosthetics, with the

first routine use of retinal implants years ahead and several
technical issues still unsolved, mass production of increas-
ingly potent mobile hardware renders it unnecessary to assign
resources for dedicated external hardware development. It
is unlikely that the bionic vision niche market will be able
to out-engineer professional consumer hardware developers.
However, given the impact of the software components in
directing communication of hardware components, it will
remain advisable to evaluate the options for optimizing
algorithms for performance. Besides the implant itself, com-
bining available hardware and software resources into a
powerful external image processing package might form one
foundation for meaningful and intuitive prosthetic vision.
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