
  

  

Abstract— Studying the morphology and interior movement 
of lymphocytes in intravital microscopic images is essential to 
understanding and treating various biological processes and 
pathological situations. A method combing features of shape, 
deformation, and intracellular motion for quantitatively char-
acterizing the dynamic behavior of a single lymphocyte is pro-
posed in this paper. The method is tested on a set of image se-
quences of lymphocytes obtained from the peripheral blood of 
mice undergoing skin transplantation using a phase contrast 
microscope. Experimental results coincide with the clinical 
observation and pathological analysis, demonstrating that the 
extracted cell morphology and motion features can provide new 
insights into the relationship between the dynamic behavior of 
lymphocytes and the occurrence of graft rejection. 

I. INTRODUCTION 

Cell morphology and motility are highly dynamic phe-
nomena that are essential to various biological processes, such 
as the development of an organism, wound healing, cancer 
metastasis, inflammation research and immune response [1]. 
Quantification of cell dynamic behavior through live cell 
imaging has become a powerful analytical tool for improving 
our understanding of various biological processes and the 
relationship between cell activity and pathological situation 
[2-5]. For example, clinicians have observed that the defor-
mation and motion of lymphocytes are relatively random and 
occur at high frequencies during the graft rejection process 
after transplantation. Currently, needle biopsy is the golden 
standard pathological method to diagnose rejection [6]. 
However, it is invasive, time-consuming, trial times limited, 
and dependent on the puncture location. Identification of 
abnormalities of the dynamic behavior of a single lymphocyte 
related to graft rejection induced by transplantation might lead 
to good indictors of the diagnosis of graft rejection. Phase 
contrast microscopes are one of the most widely used imaging 
techniques for examining long-term cell behaviors since 
harmful side effects to living cells are minimized. The lack of 
quantitative data at the cellular level has hampered theoretical 
developments of cellular biophysics [7].  
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Applications of cell image analysis, such as the classifica-
tion of white blood cells [8], cell segmentation and tracking 
[5], the measurement of cell motility and morphology [9], 
quantitative analysis of cell motion [10, 11], characterization 
of cell deformation and migration [4], quantitative study of the 
dynamic behavior of cell [12], and cell shape analysis [3, 13, 
14], have been developed in the past decades. In previous 
work pertaining to the analysis of cell motion, the cell speed 
was usually calculated via the displacement of the centroid of 
cell [9], by the tangent direction of the cell motion trail [11], 
through the cell deformation [13], or via the affine-motion 
model [4, 12]. All these methods dealt with the whole 
movement of the cell, while a little attention has been paid to 
measure intracellular motion [10]. Quantitative methods for 
cell shape analysis were introduced in [3], however, they 
didn’t provide dynamic information about cell activity. The 
work described in [10, 11] only dealt with cell motion analysis. 
There are few approaches that combined the two aspects of 
cell morphology and motion[9]. Our group has presented a 
geometric method for modeling dynamic features of cells in 
image sequences, which emphasized cell deformation analysis 
without considering intracellular movement [15]. 

In this paper, we quantitatively analyze the dynamic be-
havior of a single lymphocyte from three aspects: shape, de-
formation and intracellular motion. The three features are 
combined to characterize dynamic cellular behavior. More 
specifically, we extract intracellular motion feature from in-
tracellular movement field which is calculated by the optical 
flow techniques based on the brightness constant model (BCM) 
[16]. Our method is tested on 40 lymphocytes microscopic 
image sequences. Experimental results show that our approach 
is able to quantitatively illustrate the main features of a single 
lymphocyte’s dynamic behavior and to provide new infor-
mation for the diagnosis of graft rejection. 

II. METHODS 

We segmented and tracked cell boundaries based on active 
contour models [17]. Those details are not presented in this 
paper due to space limitations. This paper focuses on the 
analysis of single cell dynamic behavior. When we have ob-
tained cell boundaries, the next step is to describe the cell 
shape in a concise, quantitative, and biologically-relevant way. 
The shape features we have used in this paper are area, pe-
rimeter, eccentricity, circularity, average bending energy, 
rectangularity, convexity and solidity. These shape features 
are defined for the static object [3, 18]. Here we deduce the 
shape and the deformation feature descriptors for describing 
the morphology of the object in an image sequence as follows. 
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A. Cell shape features description 
The accurate description of the cell shape in an image 

sequence is the prerequisite of cell deformation analysis. We 
define shapeV  to describe the shape feature of the object in the 
image sequence: 
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where N is the total number of frames in the sequence; iD  is 
the shape feature of the object-cell in the -thi frame (there is 
only one object-cell in each frame), which can be any shape 
feature mentioned before (area, perimeter, eccentricity, cir-
cularity, average bending energy, rectangularity, convexity or 
solidity). shapeV  is regarded as the average shape feature of the 
cell in the image sequence, indicating the shape feature of the 
object in the image sequence. 

B. Cell deformation features description 
We define deformationV  to describe the shape change feature 

of the cell in the image sequence: 
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where N and iD  are the same as in (1); deformationV  is regarded 
as the average shape change difference of the cell in the image 
sequence, which indicates the deformation feature of the ob-
ject in the image sequence. The deformationV  with regards to the 
area and the perimeter are normalized. 

C. Intracellular motion features based on optical flow 
The optical flow computation is a key technique for object 

motion analysis, which is the distribution of the apparent 
velocities of brightness movement patterns in adjacent images. 
The optical flow constraints equation based on the BCM is 
shown as follows [16]: 

 0x y tI u I v I⋅ + ⋅ + =                                  (3) 

where ( , , )I x y t  denotes the image brightness at the point 
( , )x y  in the image at time t . xI , yI and tI  are the partial 
derivatives of the image brightness with respect to x , y  and 
t , respectively. (u,v) is the optical flow velocity. The details 
of the solution process can be found in [16]. 

We define motionV  to describe the intracellular motion 
feature as follows: 
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where ( )MeanVeloFieldV i  is the mean velocity of the intracellular 
motion field (which is the same as the optical flow field) at the 
i-th frame, and M is the total number of frames of the optical 
flow fields in the image sequence. The mean velocity of each 
intracellular motion field is computed by: 
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where ( , )u x y and ( , )v x y are the horizontal and vertical 
components of the velocity at the point ( , )x y . ( )A Ω  is the 

area of the region Ω  which is a closed two-dimensional op-
tical flow field domain: 

{ }2 2( , ) : ( , ) ( , )x y u x y v x y thresholdΩ = + ≥       (6) 

Here, 0.0001threshold = , which is used to restrict the edge of 
the optical flow field. 

III. EXPERIMENTS 

A. Materials preparation 
Two sets of experiments were conducted to obtain the cell 

image sequences. The first experiment was conducted through 
autologous transplant; healthy Balb/C male mice were used as 
both hosts and donors, which was the self-skin transplantation 
group (SST group). The second experiment was conducted 
through allogenic transplantation, in which healthy Balb/C 
male mice were used as hosts while healthy C57BL/6 male 
mice were used as donors. This was the allogenic skin trans-
plantation group (AST group). The lymphocytes in the AST 
group showed irregular dynamic behavior and were more 
active when compared to the SST group. 

The lymphocyte image sequence (20~30 seconds, 
500~700 frames) was obtained through an optical phase con-
trast microscope at a magnification of 16000 from the blood 
samples that were collected from the tails of the mice (6-8 
weeks, 20-22g ) 7 days after the skin transplantation. Our data 
consists of 40 image sequences (20 from each of the two 
groups). 

B. Experiments on cell shape and deformation features ex-
traction 
We selected the first 500 sequential frames from the im-

ages sequence. Then the 500 frames were sampled uniformly 
(selecting every tenth frame) to form a 50-frame clip. We 
segmented and tracked the cell boundaries in each frame from 
the 50-frame clip. The boundaries of the cells are shown as the 
solid line in Fig. 1. 

The shapeV  and deformationV  were computed from each clip 
according to (1) (2), respectively. The values that are useful in 
differentiating between the two test groups are shown in Fig. 2 
( shapeV  of circularity, convexity and solidity; deformationV  of area, 
perimeter, circularity, convexity and solidity). The horizontal 
axis denotes the serial number of the image sequence and the 
vertical axis is the value of the shapeV  or deformationV . 

 

 

 

 

 

 

 

(a) from SST group                           (b) from AST group. 
Figure 1. Image sequences observed through a phase contrast microscope. 
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Figure 2. The shape and deformation descriptors of 40 image sequences (20 from each of the two groups).

There are distinct differences between two groups of data 
in regards to shape: shapeV  of circularity, convexity and solidity 
(as shown in Figs. 2(a)-(c). Differences also exist in deformationV  
of deformation features, as demonstrated in Figs. 2(d)-(h). The 
other considered features ( shapeV  of area, perimeter, eccen-
tricity, average bending energy, rectangularity; deformationV  of 
eccentricity, average bending energy, rectangularity) are in-
significant and are omitted in Fig. 2. 

C. Experiments on intracellular motion features extraction 
The intracellular motion field was computed according the 

optical flow techniques discussed in Section II-C. Pairs of 
images taken at an interval of 4 (frames 1 and 5, 2 and 6…) 
were used to create an optical flow field. 46 different optical 
flow fields were obtained from each 50-frame clip. One op-
tical flow field is shown in Fig. 3(c), where each vector dis-
plays the sampled velocity of 5 5× pixels. The direction and 
the length of the arrow denote the direction and the magnitude 
of the velocity of intracellular motion, respectively. 

 

Figure 3. (a) The n-th frame image. (b) The (n+4)-th frame image. (c) The 
optical flow field computed from the two adjacent frames. 
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Figure 4. Evolution with frame of the mean velocity extracted from two image 
sequences. 
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Figure 5. The intracellular motion features of 40 image sequences (20 from 
each of the two groups). 

The evolution with frame of the MeanVeloFieldV  extracted 
from two image sequences are shown in Fig. 4. We then ex-
tracted the motion feature from each clip according to equa-
tion 4. The results are shown in Fig. 5, which demonstrates 
that the speed of intracellular movement in the AST group is 
faster than in the SST group. This is consistent with the clin-
ical observation in this study. 

(a) (b) 

(c) 
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D. Cell dynamic behavior classification by the probabilistic 
neural network (PNN) 
We extracted the shape, deformation and intracellular 

motion features of the cell from 40 image sequences, which 
are shown in Fig. 2 (shape and deformation) and Fig. 5 (in-
tracellular motion), respectively. Then we used the shape 
descriptors of circularity, convexity and solidity, the defor-
mation descriptors of area, perimeter, circularity, convexity 
and solidity, and the motionV  to form a 9-parameter feature 
vector (S&D&M-features) to characterize the cell dynamic 
behavior in an image sequence. PNN was used to classify the 
SST and AST categories with 10-folder cross-validation. A 
9-parameter feature vector was extracted from each clip, and 
used as the input of PNN. In each trial, we randomly select 
nine tenths of data for training, and one tenth of them for 
testing. All the classification experiments were randomly 
repeated 100 times. Additionally we compared our results 
with several other schemes such as using shape features only 
(S-features: shapeV  of the circularity, convexity and solidity); 
using deformation features only (D-features: deformationV  of the 
area, perimeter, circularity, convexity and solidity); or using 
the motion feature only (M-feature: motionV ). 

The classification rates of the two groups are shown in 
Table I, namely the comparison results of sensitivity (Sen: the 
probability that the test reports that an image sequence is from 
the AST group when in fact it is from the AST), specificity 
(Spe: the probability that the test reports that an image se-
quence is from the SST when in fact it is from the SST), false 
positive (FaP: the probability of an AST result when in fact an 
image sequence is from the SST group ), false negative (FaN: 
the probability of an SST result when in fact an image se-
quence is from the AST group), and mean recognition (MRe: 
the average correct recognition rate ). For our test, it typically 
takes about 0.3 second to run PNN with MATLAB 2012 
implemented on a 2.93 GHz CPU, 4.00 G RAM personal 
computer. 

TABLE I.  CLASSIFICATION RESULTS BY PNN 

       Ratio 
Features 

Sen 
(%) 

Spe 
(%) 

FaP 
(%) 

FaN 
(%) 

MRe 
(%) 

S 88.39 91.87 8.44  11.21  90.13  
D 89.88 90.15 9.87  10.07  90.03  
M 86.26 85.88 14.05  13.80  86.08  

S&D&M 94.82 97.83 2.22  5.05  96.33  

Table I shows that the highest recognition rates are 
achieved with the combined shape, deformation and intracel-
lular motion features. 

IV. CONCLUSION 

We have proposed a scheme for quantitatively analyzing 
the shape, deformation, and intracellular motion of a lym-
phocyte in intravital microscopic image sequences, and have 
applied it to the study of the dynamic behavior of a single 
lymphocyte. The contribution of the proposed method can be 
concluded in two aspects: first, we have computed the ve-
locity of intracellular movement field using optical flow 
techniques and extracted motion features from it. Second, we 

have presented a comprehensive quantitative analysis of the 
dynamic behavior of lymphocytes by combining features of 
cell shape, deformation, and intracellular motion. Experi-
mental results show that the extracted features can be used to 
characterize the cellular dynamic behavior, leading to poten-
tial applications to the research of the single cell dynamic 
behavior, such as the assisted diagnosis of graft rejection. 
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