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Abstract²Adult bone diseases, especially osteoporosis, lead to 

increased risk of fracture associated with substantial morbidity, 

mortality, and financial costs. Clinically, osteoporosis is defined 

by low bone mineral density; however, increasing evidence 

suggests that the micro-architectural quality of trabecular bone 

(TB) is an important determinant of bone strength and fracture 

risk. Skeletonization plays an important role providing a 

compact representation of TB network that allows computation 

of several quantitative parameters relating to TB 

micro-architecture. Literature of three-dimensional 

skeletonization is quite matured for binary digital objects. 

However, the challenges of skeletonization for fuzzy objects are 

mostly unanswered. Here, an algorithm for fuzzy 

skeletonization is presented using fuzzy grassfire propagation 

and a branch-level noise pruning strategy and, finally, its 

application to TB micro-architectural assessment is investigated. 

Specifically, the fuzzy skeletonization algorithm is applied to 

compute TB plateness, plate/rod ratio, thickness, and spacing. 

Finally, the effectiveness of these measures to predict 

experimental bone strength is investigated on twelve cadaveric 

specimens and the results are encouraging with the R2 value of 

linear correlation with bone strength being as high as 0.93, 0.88, 

0.85 and 0.86, respectively. 

I. INTRODUCATION 

Osteoporosis increases the risk of fractures associated 

with substantial morbidity, mortality, and financial costs. 

Approximately, 30% of postmenopausal white women in the 

United States suffer from osteoporosis and the prevalence in 

Europe and Asia is similar. Approximately one in two women 

and one in four men over age 50 will have an 

osteoporosis-related fracture in their remaining lifetime. 

Clinically, osteoporosis is defined by low bone mineral 

density (BMD). However, increasing evidence suggests that 

micro-architectural quality of trabecular bone (TB) is an 

important determinant of bone strength and fracture risk [1]. 

BMD only explains about 65% to 75% of the variance in bone 

strength [2], while the remaining variance is due to the 

cumulative and synergistic effect of various factors including 

bone macro- and micro-architecture, tissue composition, and 

micro-damage. In this paper, we investigate the application of 

fuzzy skeletonization to quantitatively assess TB 

micro-architecture at in vivo imaging resolution.  
Several 3D skeletonization algorithms [3-7] have been 

reported for binary digital objects. But the same is not true for 
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fuzzy skeletonization. Although, a few works on gray scale 
skeletonization have been presented in literature [8,9], the 
fundamental challenges related to fuzzy skeletonization are 
mostly unanswered and a complete skeletonization algorithm 
for fuzzy digital objects is missing. Here, a framework and an 
algorithm for fuzzy surface skeletonization are developed 
using a notion of fuzzy grassfire propagation. The process of 
fuzzy grassfire propagation is simulated using fuzzy distance 
transform (FDT) [10]. Arcelli and Baja [11] first used DT in 
skeletonization in 2-D and discussed its advantages. Saito and 
Torowaki [6] and others [3] have used DT to define the voxel 
erosion sequence. Here, a fuzzy skeletonization algorithm is 
presented using a notion of fuzzy grassfire propagation and a 
skeletal noise pruning strategy is defined using significance 
measures at individual skeletal branch level. The role of fuzzy 
skeletonization in computing individual TB plate width and 
their characterization on the continuum between a perfect 
plate and a perfect rod is examined. Also, the fuzzy 
skeletonization algorithm is applied to compute TB thickness 
and marrow spacing. Finally, the effectiveness of these 
measures to predict experimental bone strength has been 
investigated on twelve cadaveric specimens and the results are 
presented. 

II. FUZZY SKELETONIZATION ALGORITHM 

%OXP¶V�SLRQHHULQJ�ZRUN�RQ�JUDVVILUH�WUDQVIRUP�[12] led to 
the notion of skeletonization that converts a volumetric object 
into a union of surfaces and curves. The process is intuitively 
defined using fire propagation on a grass field, where the field 
resembles an object. The fire is simultaneously set at all 
boundary points of the field and it propagates inwardly at a 
uniform speed. The skeleton is defined as the set of quench 
points, i.e., the points where two or more fire fronts meet. 
However, the notion of skeletonization for fuzzy objects is not 
well known. To define a fuzzy skeletonization process, we 
VXJJHVW�PRGLI\LQJ�WKH�%OXP¶V�JUDVVILUH�WUDQVIRUP�IRU�D�IX]]\�
object where the membership function is interpreted as local 
material density. In this way, the fuzzy grassfire transform is 
exacWO\� WKH� VDPH� DV�%OXP¶V� RULJLQDO� SURFHVV� H[FHSW� WKDW� WKH�
speed of fire at a given point is inversely proportional to its 
material density. Thus, fuzzy distance transform (FDT) [10], 
the least amount of material to be traversed to reach to a point 
L is proportional to the time when the fire front reaches L. 
Therefore, during the fuzzy grassfire propagation, the speed of 
a fire front at a point equates to the inverse of local material 
density and this equality is violated only at quench points 
where the propagation process is interrupted. Thus, a voxel 
L Ð <7 , where <  is the set of integers and <7  represents a 
rectangular image grid, is a quench voxel in a fuzzy digital 

object é L [kLá Bé:L;o���L Ð <7�Béã<7 \ >rás?_  if the 

following inequality holds for every neighbor M of L 

$SSOLFDWLRQ�RI�)X]]\�6NHOHWRQL]DWLRQ�WR�4XDQWLWDWLYHO\�$VVHVV�

7UDEHFXODU�%RQH�0LFUR-$UFKLWHFWXUH 
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During the process of fuzzy skeletonization, voxels are 
removed in the increasing order of FDT values. The overall 
fuzzy skeletonization process for a fuzzy object é  is 
schematically presented in the following. Here, 1 L
<L��Bé:L; P r= denotes the support of the fuzzy object é. 

Primary skeletonization 

select voxels L Ð 1 in the order of FDT values 

  if L is not an axial voxel  

    if removal of L preserves 3D topology of 1 

      if removal of L preserves 2D topology on mid-planes 

        remove L from 1, i.e., set Bé:L; L r 

Final skeletonization: 

select voxels L Ð 1 in the order of FDT values 

  if L belongs to a two-voxel thick structure 

    if removal of L preserves 3D topology of 1 

      if removal of L preserves 2D topology on mid-planes 

        remove L from 1, i.e., set Bé:L; L r 

select voxels L Ð 1 in the order of FDT values 

  if topologic and geometric features of L does not match 

    if removal of L preserves 3D topology of 1 

        remove L from 1, i.e., set Bé:L; L r 

 

Fig. 1. Results of intermediate steps of fuzzy skeletonization. (a) 3D display 
of trabecular bone region in a micro-CT image of a cadaveric distal tibia 
specimen. (b) A sagittal image slice displaying the fuzziness in the image. (c) 
All quench voxels before filtering with local significance measure. (d) All 
axial voxels after local significance analyses. (e,f) Results of final 
skeletonization (e) and local significance computation (f). (g) Final results 
after noisy branch pruning. 

Removal of a voxel L Ð 1 preserves the topology of 1 if 
and only if L is a (26,6) simple voxel [13] in 1. Beside the 3D 
topology preservation condition, an additional constrain of 2D 
topology preservation [14] in all three middle planes of the 
candidate voxel is subjected to ensure the continuity of 
surface-like structures and to avoid undesired drilling effects 
as illustrated by Saha et al. [5]. To complete the description of 
primary and final skeletonization algorithms, axial voxels, 
two-voxel thick structures and their removal strategy will be 
defined. Finally, a pruning algorithm removing noisy skeletal 
branches will be described. 

A. Axial Voxel 

An axial voxel resembles to a quench voxel of grassfire 
transform constituting the skeleton of an object. During 
grassfire transform in a continuous space, two types of 
quench points are formed: surface- and curve-quench points. 
In a digital space, surface-quench voxel is formed when two 
opposite fire fronts meet along x-, y- or z-direction and a 
curve-quench voxel is formed when fire fronts meet from all 
directions in xy-, yz-, or zx-planes. A voxel L L
kLë á LìáLío Ð 1 is an x-surface-quench voxel if the following 

two conditions are satisfied by three neighboring voxels 

Lë? L kLë F sáLìá Lío , Lë> L kLë E sáLìá Lío , and 

Lë>> L kLë E táLìá Lío: 

s;�(&6:L; P (&6:Lë?;á 

t;�(&6:L; P (&6:Lë>;á�����á 

����������������������(&6:L; L (&6:Lë>; è (&6:L; P (&6:Lë>>;ä 

To define a curve-quench voxel, let us first consider the 
formulation of the situation when fire fronts meet in the 
xy-plane. Curve quench voxels may form a 2x2 clique on the 

xy-plane. Let 2vw L [kLë áLìáLíoá kLë E sá LìáLíoá kLë áLì E
sáLíoá kLë E sá Lì E sáLío_  denote the 2x2 clique. Let 

3k2vwo denote the set of voxels within the 2x2 clique 2vw with 

their FDT value identical to that of L, i.e., 

3k2ëìo L [M���M Ð 2ëì���(&6:M; L (&6:L;_ä 

Thus, the fire fronts reach simultaneously at every voxel of 

3k2vwo from all directions on the xy-plane. Therefore, a voxel 

L L kLë áLìá Lío Ð 1  is an xy-curve-quench voxel if the 

following condition holds for Ê�M Ð /vw:L;F 3k2vwo 

M�is 26-adjacent to 3k2vwo   �   (&6:M; O (&6:L;, 

where, /vw:L; is the set of all voxels [M L kMë áMìá Mío���M Ð
<7��Më L Lë_ constructing the xy-plane through L. 

Although the quench voxels captures the notion of fuzzy 
grassfire transform, it suffers from the fact that a large number 
of spurious quench voxels are created (Fig. 1(c)). Therefore, it 
is imperative to filter out some of these quench voxels based 
on their significance. Here, we introduce a function that 
UHVHPEOHV�WKH�³ORFDO�VLJQLILFDQFH�IDFWRU´��/6)��RI� Lndividual 
voxels and use LSF measures in the neighborhood to 
determine the significance of a quench voxel. Local 
significance factor or LSF of any voxel L Ð 1, denoted by 
.5(:L;, is defined as follows: 
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LSF( ) - 1 f ( FDT(q)-FDT(p) ) 
p - - + maxqEN'(p) HtoCp)+fo(q))lp-ql , (2) 

where the function f+ (x) returns the value of the input x if 

x > 0 and zero otherwise. The formulation of the above 

equation follows the arguments of Equation 1. Note the term 

inside the function f+ essentially represents the inverse of 

speed of fire front propagation at the voxel p normalized by 
local material density. Significance of a surface or curve 
quench voxel is determined by analyzing the average LSF 

value of its neighboring voxels. Specifically, a surface or a 

curve quench is defined as a significant surface or significant 
curve quench voxels ifthe average LSF value in the respective 

neighborhood is greater than a preset threshold value r. 

Finally, any significant surface- or curve-quench voxel is 
referred to as an axial voxel. 

B. Final Skeletonization 

Grassfire propagation in a digital space often leaves 
two-voxel thick quench structures after primary 

skeletonization. The purpose of final skeletonization is to 
convert two-voxel thick structures into single-voxel thick 

structures and it is completed in two steps. Intuitively, a voxel 
is two-voxel thick if its three non-opposite 6-neighbors are 

skeletal voxels and forms two-voxel thick surface across x-, 

y-, and/or z-direction [5]. During the first step, voxels are 
considered for erosion in the order of their FDT values. A 

voxels satisfying two-voxel thickness along all three 
coordinate directions is deleted ifit is a (26, 6) simple voxel. A 

voxel satisfying two-voxel thickness along two directions, say 
x and y, is deleted if it is a (26, 6) simple voxel and it preserves 

2D topology in Mxy(p). Finally, a voxel satisfying two-voxel 

thickness along only one directions, say x, is deleted if it is a 
(26, 6) simple voxel and it preserves 2D topology in both 

Mx/P) andMzxCp). The purpose of the second step of final 

skeletonization is to remove voxels with contradicting 

topological and geometric properties. 

C. Skeleton Pruning 

The primary goal of a skeleton pruning algorithm is to 
discriminate between significant and non-significant branches 

so that only false branches may be removed. This goal is 

accomplished by computing LSF-weighted length of an 
individual branch from its edge to the corresponding junction 

voxel. This LSF-weighted branch length is used as a global 

significance factor of a specific skeletal branch. This overall 
process is implemented using the following steps - (1) digital 

topological analysis (DTA), (2) conversion oftwo-voxel wide 
curve-like structures into a true digital curve, (3) computation 

of global significance factors, and ( 4) removal of 

non-significant branches. 

Ill. EXPERIMENT RESULTS 

Results of intermediate steps of skeletonization and 
pruning on a small region of trabecular bone image are 

illustrated in Fig. 1. To examine the role of fuzzy 

skeletonization to assess TB micro-architectural quality, two 
methods were implemented using fuzzy skeletonization - (1) 

volumetric topological analyses [15] and (2) TB thickness and 

spacing computations [ 16]. The first method computes 
individual trabecular plate width and characterization of 
plateness and plate-to rod ratio using unique algorithms digital 

topological analyses, manifold distance transform, and feature 

propagation [ 15]. This method generates average trabecular 

plate or surface width ( SWvTA ) and plate-to-rod or 

surface-to-curve ratio (SC RvTA) over a region-of-interest 

(ROI). The second method computes local TB thickness and 
spacing using star line based minimum intercept computation 
and feature propagation [ 16] and it returns average TB 

thickness (TH8 ) and TB or marrow spacing (SPM) over an 

ROI. In these methods, fuzzy skeletonization plays a crucial 

role in selecting sample points which are vital in determining 
the effectiveness of these measures. 

Fig. 2. Illustration of the fuzzy skeletonization based TB micro-architectural 

measures for three different TB specimens - (a) strong (yield stress: 

12.5MPa), (b) moderate (8.7MPa) and (c) weak (3.4 Pa). 

Experiments were designed to examine the ability of fuzzy 
skeletonization based TB micro-architectural measures to 
predict experimental TB strength. All experiments were 
performed on twelve fresh- frozen human cadaveric ankle 

specimens harvested from 11 body donors under the Deeded 

Body Program at the University of Iowa. The following 
sequential steps were applied on each specimen - (1) MD-CT 

imaging, (2) image processing, and (3) mechanical testing. All 

ankle specimens were kept frozen until the performance of 
MD-CT imaging. 

High resolution MD-CT scans of distal tibia were acquired 
at the Iowa Comprehensive Lung Imaging center, University 

of Iowa on a 128 slice SOMATOM Definition Flash scanner 
at 120 kV, 200 effective mAs, and reconstructed at 0.2 mm 
slice thickness using an U70u kernel achieving high spatial 

resolution. Three repeat MD-CT scans of each distal tibia 

specimen were acquired after repositioning the specimen on 
the CT table before each scan. 

TB MD-CT images were converted into bone mineral 
density (BMD) images using the INTable™ Calibration 

Phantom and were resampled at 150 µm isotropic voxel. 

These resampled BMD images were used for computation of 

3684



average BMD, TH8 , SPM, SWvTA' and SCRvTA over a target 
ROI. 

To determine TB strength, a cylindrical TB core with 8 

mm in diameter and 20.9±3.3 mm in length was cored from 

distal tibia in situ along the proximal-distal direction. Each TB 
core was mechanically tested in compression using an 
electromechanical materials testing machine. To minimize 
specimen end effects, strain was measured with a 6 mm gage 

length extensometer attached directly to the midsection of the 

bone. A compressive preload of 10 N was applied and strains 
then set to zero. At a strain rate of0.005 sec-, each specimen 

was preconditioned to a low strain with at least ten cycles and 

then loaded to failure. Yield stress was determined as the 
intersection of the stress-strain curve and a 0.2% strain offset 

of the modulus. 

Results of TB micro-architectural measures for three 

specimens with different bone strengths are shown in Fig. 2. 
An 8% loss in BMD from the strong bone (a) to the weak bone 
(c) leads to a 73% loss in bone strength and manifests into 

20% reduction in TB thickness, 50% increase in marrow 

spacing, and 36% reduction in TB surface width measure. This 
observation supports that TB thickness and marrow spacing 

are highly sensitivity to bone degeneration. 

In order to examine the ability of fuzzy skeletonization 

based TB micro-architectural measures to predict bone 

strength, a linear correlation analysis between each of the four 
measures and the TB's experimental yield stress was 

performed. The image-based measures were computed over a 
cylindrical VOi with its axis aligned to that of distal tibia and 
its length and position were selected as per the data recorded 

during specimen preparation and mechanical testing. The 
results of correlation analysis between yield stress and each of 

the four TB measures are shown in Fig. 3. The value of R 2 of 

the linear correlation between bone mineral density (BMD) 

and TB yield stress was observed as 0.78. All four TB 
micro-architectural measures have demonstrated better 

strength to predict TB's yield stress as compared to BMD. 
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Fig. 3 Ability of different TB micro-architectural measures to predict bone 

strength shown in terms ofR
2 

values oflinear correlation between yield stress 

and each ofTB8 (a), SPM (b), SWvTA (c), and SCRvTA (d). 

IV. CONCLUSIONS 

In this paper, we have presented a fuzzy skeletonization 

method and its application to quantitatively asses TB 

micro-architectural measures through MD-CT imaging under 

an in vivo condition. Results of a comprehensive study on 

twelve cadaveric ankle specimens evaluating the new method 

are presented. Observed results have demonstrated that fuzzy 

skeletonization based TB parameters are able to predict 

trabecular bone's experimental mechanical properties under 

an in vivo condition. Currently, we are investigating the role 

of the new method in characterizing different groups of 

human subjects with different clinical status of bone health. 
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