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Abstract— Clinical data analysis is of fundamental 

importance, as classifications and detailed characterizations of 

diseases help physicians decide suitable management for 

patients, individually. In our study, we adopt diffusion maps to 

embed the data into corresponding lower dimensional 

representation, which integrate the information of potentially 

nonlinear progressions of the diseases. To deal with 

nonuniformaity of the data, we also consider an alternative 

distance measure based on the estimated local density. 

Performance of this modification is assessed using artificially 

generated data. Another clinical dataset that comprises 

metabolite concentrations measured with magnetic resonance 

spectroscopy was also classified. The algorithm shows 

satisfactory results. 

I. INTRODUCTION 

The rapid development of the clinical investigation 

modalities, such as computed tomography (CT) and magnetic 

resonance imaging (MRI), provides more high dimensional 

data on certain given disease. Analysis of clinical data is of 

challenging due to several reasons: 

 Relatively small size of available data: recruiting 
patients is sometimes difficult; this is especially true if 
additional criteria are required for patients to meet, or 
the study aims to recruit patients with rare diseases. 

 High dimensionality of the data: a whole gamut of 
clinical investigation modalities can be used to obtain 
the information about patients noninvasively, even a 
single instrument can offer a list of various features.  
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 High complexity of the data: The progression of many 
diseases and symptoms do not follow a linear trend, 
and sometimes there can potentially be several 
different developing patterns for certain disease. 
These characteristics result in irregular distribution, 
and possibly nonlinear structure of the data. 

 High noise: the distribution of the features of patients 
can sometimes cover a wide range. Also the 
involuntary movements of the patients cause the 
unpredictable variation of the data, especially when 
the instruments are sensitive to motion, such as MRI 
and magnetic resonance spectroscopy (MRS). 

 The gray zone: Sometimes it is difficult to 
differentiate different groups since different diseases 
may mimic similar, or even the same symptoms. 

Exploring the behavior and patterns of clinical data is 

mostly done with statistics or linear analysis. But the 

aforementioned natures may make these approaches 

incapable of dealing the data effectively and efficiently. 

Sometimes the higher dimensional data may actually lie on a 

lower dimensional space. Recently a new approach, namely 

diffusion maps [1], had been proposed to deal with high 

dimensional data. Based on the stochastic process on the 

spectral graph theory, diffusion maps is among the most 

powerful spectral dimensionality reduction tool to locate 

intrinsic lower dimensional coordinates of a given 

multi-dimensional dataset [2]. Diffusion Maps has applied to 

diverse applications [3-6].  

The diffusion maps use a distance measure that preserve 

local information of a given dataset. The distance between a 

pair of data points is short providing there exists some paths 

connecting them; that is, the affinity for this pair of points is 

high. This characteristic is ideal in clinical data analysis since 

the distribution patterns of the patients do not always behave 

in a linear sense. And intuitively, the progression of diseases 

and symptoms mimics the concept of local connectivity if the 

data exhibits certain longitudinal behavior. In addition to 

capable tracking down the nonlinear structure, diffusion maps 

also reduces the dimensionality of the data. However, the 

irregular distribution of the data, along with relative small 

population size and other factors discussed above, complicate 

the discerning of the data. 

In this study, we use a self-tuning kernel, which is coupled 

with a density estimator, to adjust the bias introduced by the 

underlying distribution of the data. The capability of this 

approach lies in its ability to deal with data scattering induced 

by nonuniform density. An artificially generated data using 

Gaussian distribution is given in later section to illustrate this 
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phenomenon. Another clinical dataset comprise 

spinocerebellar ataxia type 3 (SCA3) patients, multiple 

system atrophy (MSA) patients, and several normal subjects 

is classified as well. 

II. MATERIALS AND METHODS 

A. Diffusion Maps 

For a given measure (Χ, μ), a dataset X consists of N 

samples with underlying distribution μ is included. The data 

points may be characterized as xi=(yi1,yi2,…,yil,…,yim), 

i=1,2,…,N, l = 1,2,…,m, A kernel k:X x X→R is defined to 

measure the pairwise similarities between every pair of data 

points. The kernel function is nonnegative, and it defines 

certain notion of connectivity between data points 

pairwisely. Since the design of the kernel will influence the 

geometry captured by diffusion maps, the choice of the 

kernel should be guided by the characteristics of the data or 

prior knowledge that one bears in mind. A popular choice 

for distance measure is the Gaussian kernel:  

k(xi, xj)  ≡  exp



-|| xi - xj ||

2

 σ
2    

(1) 

Since the kernel is symmetric, the constructed weighted 

graph will be undirected as well. Once the choice of kernel is 

determined, the mass can be defined as: 

m(xi)  ≡  ∫X k(xi, xj) dμ(xj) > 0 (2) 

Then a weighting function can be built by normalizing the 

kernel using mass:  

p(xi, xj)  ≡  
k(xi, xj)

m(xi)
  

(3) 

Since the weighting function satisfies ∫X p(xi, xj)dμ(xj) = 1, 

the constructed graph can be viewed as an asymmetric 

Markov chain built over the data, where the p(xi, xj) is 

interpreted as the probability for state xi transits to state xj in a 

single time step. A square matrix P whose elements are p(xi, xj) 

is then constructed. Taking powers of P, which is equivalent 

to drive the Markov chain forward, will reveal corresponding 

intrinsic geometry of the data. If one allow the Markov chain 

running unceasingly, all the data points will be merged 

together and regarded as a single cluster.  

As long as the matrix P is nonsingular, it can be written in 

quadratic form: P
t 
= ν λ

t 
ν

-1
, where ν is the discrete set of 

eigenfunctions {ν
(i)

:i=1,2,…,N} with corresponding 

eigenvalues {(λ
(i)

)
t
:i=1,2,…,N}. The sequence of eigenvalues 

has the property such that 1= |λ
(1)

| ≥ |λ
(2)

| ≥ … ≥ |λ
(N)

| ≥ 0. Since 

the sequence of eigenvalues tends to zero, a few largest 

eigenvalues and their corresponding eigenfunctions can be 

used to approximate the P with minimal truncation error. 

The diffusion maps is then defined as: 

Ψ
(t)

(xi)  ≡  {(λ
(j)

)
t
ν

(j)
 (xi)},j = 1,2,…,N (4) 

The dimension of the new embedding depends on only the 

powers of the P and no longer depends on the dimension of 

the original data. Coifman and Lafon [1] define the diffusion 

distance between state xi and state xj in t time steps to be:  

D
(t)

(xi, xj)  ≡ ||Ψ
(t)

(xi) -Ψ
(t)

(xj)||
2
.
 

(5) 

The diffusion distance computes the affinity between data 

points pairwisely. The diffusion distance is robust to noise, as 

the distance between every pair of data points depends on all 

existing connections between them. 

Since P is asymmetric, (5) is actually built under the 
weighted distribution. Alternatively, another diffusion 
distance can be defined by using a symmetric weighting 
function to simply certain settings. A symmetric normalization 
can be obtained by defining the kernel to be:  

kˆ(xi, xj)  ≡  
m(xi) 

 m(xj) 
 p(xi, xj)  =   

k(xi, xj)

m(xi) m(xj) 
  

(6) 

 

Setting up the matrix P with (6) as distance measure, the 
resulting formula for diffusion distance will be base on the 
underlying distribution only. 

B. Self-tuning Kernel based on Density Estimation 

The design of the kernel influences the resulting 

embedding due to the fact that the structure of the constructed 

Markov chain is altered. Even if the kernel is drawn from one 

of the known parametric family of distributions, tweaking its 

parameters may yield quite distinct results; this is especially 

true if the underlying distribution function of the data is 

irregular. 

While a global setting captures the intrinsic geometry of 

the data, it would not be able to effectively address the 

intrinsic nonuniform density of the data. To compensate the 

bias and skewness introduced by the distribution of the data, 

we consider the local density of the data points. Density plays 

an important role in statistics; it conveys the distribution 

pattern to be drawn from the data. In our case, consider any 

point xi in the original data, let the set ξ(xi) ≡ { xj: || xi – xj || < ε, 

j=1, …,ni} being its neighbor. Providing one assume that the 

data is drawn from the normal distribution N(u,τ2
) and the 

variance of all dimensions are the same, then the ratio that the 

local variance of data points in the set ξ(xi) to the global 

varianceτ2 
should depend on the size of the local set, that is, 

ni. One may further assume that if this ratio of associated with 

ξ(xi) surpasses certain predefined value, then data points in 

the ξ(xi) are actually discernable. Since the density of ξ(xi) is 

proportional to its sample size, we can use ni as a density 

estimator. 

Alternatively, one can use the following integral to estimate 

the local density instead of ni, as delineated by Silverman [6]: 

d(xi)  ≡  ∫ξ(xi) kd(xi, xj) dx (7) 

where kd is a Gaussian function that takes the same form as 

(1), except for the fact that σ is replaced by σd (In our case, we 

set σd to be ε). For normal distribution, it can be shown that 

estimated d(xi) will converge to ni as the sample size N is 

sufficiently large. The d(xi) is then incorporated into the (1) to 

form a self-tuning kernel:  

a(xi, xj)  ≡  exp




-d(xi)|| xi - xj ||

2

 τ2   .  
(8) 
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Figure 1.  Demonstration of two different approaches using artificially generated data. The setup for this data constitutes three Gaussian distribution: 

N((1,0,0),1), N((-1,0,0),1), and N((0,0,0),2). (A) The original data displayed in 3D. The red group disperses through both the green one and the blue 

one. One can consider the higher density clusters as typical representative of certain disease, or the gray zone induced by overlapping interval between 
different groups. (B) The diffusion coordinate computed using Euclidean distance measure. The red group is incorrectly regarded as the background of 

the data due to its lower density. (C) Diffusion coordinate obtained with self-tuning kernel. The dispersive red cluster is glued altogether and can be 

easily identified. 

 

Figure 2.  The Intermediate result of density estimation performed on the dataset. (A) The original data in 3D view. The dimensions being chosen as 

coordinates are: NAA/Cr in both left and right cerebellum, and Cho/Cr in left cerebellum. (B) The contour of bivariate density estimation using 

NAA/Cr in both left and right cerebellum. (C) The corresponding 3D contour of the estimated density. It can be inferred that not only SCA3 has lower 

density, but the gray zone induced by both normal subjects and SCA3 group complicate the situation further. 

 

This approach is more flexible, and can reduce the 
possibility that samples with different characteristics being 
identified as the same due to nonuniform density of the data. 
Furthermore, the method is nonparametric; this feature is 
desirable since no additional prior or background knowledge 
is required for clients to obtain meaningful results. 

C. Implementation 

1. For any m-dimensional data, we normalize the data such 

that Var[yil
2
] = 1, l = 1,2,…,m, respectively. 

2. For any point xi, its neighbor is defined to be the set ξ(xi); 

a Gaussian kernel kd  is then adopted to evaluate the local 

density of the data. A normalized density d’(xi) is then 

defined by dividing d(xi) by ∫Xd(xi)dxi such that . 

∫Xd’(xi)dxi = 1. 

3. A density based Gaussian kernel is used to evaluate the 

pairwise affinity. Theτ2 
is assumed to be Var[yil

 2
]

 1/2
. 

4. A symmetric matrix is built using aforementioned 

formula, with the parameter t being 2. By spectral 

decomposition, a lower dimensional diffusion 

embedding can be defined using several largest 

nontrivial eigenfunctions and their corresponding 

eigenvalues up to a predefined precision. 

A result using artificially generated data is given in figure 1. 

We assume that the local density of the gray zone is generally 

higher than clean groups, since it is a mixture of subjects from 

different clusters; also, if there are multiple clusters with 

varied density appear at once, it is unlikely that a naïve kernel 

would be able to treat the data properly. Each dataset is 

randomly divided into training set and testing set. The 

training set is fed to train the support vector machine (SVM) 

first, and then evaluating the performance of SVM with the 

testing set. The results show that the overall classification 

ratio has been improved using the modified method. 

  An important characteristic of such spectral clustering 

techniques is that they are feasible only if the different groups 

can be separated in the lower dimensional representation [8]. 

This issue arises in our study of the clinical dataset, where the 

classification accuracy of the MSA groups in the diffusion 

embedding actually decreases in comparison to that using 

original data.  

III. EXPERIMENTAL RESULTS 

The clinical dataset comprise relative metabolite 
concentrations measured using magnetic resonance 
spectroscopy (MRS). The MRS is carried out on left and right 
cerebellum, left and right basal ganglia, and vermis. The 
relative concentration of three different metabolites, namely 
N-acetylaspartate (NAA), Choline (Cho), and myo-inositol 
(mI), are measured at all five anatomies; these three 
concentrations have been normalized using the concentration 
of creatine (NAA/Cr, Cho/Cr, mI/Cr). The dataset consists of 
three different groups, namely the 63 SCA3 patients, 98 MSA 
patients, and 44 normal subjects. While the SCA and MSA 
share similar clinical symptoms, the MRS has been shown to 
be a potential modality to differentiate SCA and MSA, 
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Figure 2.  Diffusion coordinate obtained with different approaches. 

(A) Diffusion embedding computed with the naïve distance measure. 

The data roughly is divided into three distinct clusters, all of which are 

mixture of different groups. (B) Result obtained using self-tuning 

kernel. The false clusters in (A) no longer exist. 

 

particularly multiple system atrophy-cerebellar type (MSA-C) 
[9]. While the MSA patients are readily separable from the 
other two groups, classifying SCA3 patients and normal 
subjects is more difficult, as shown in figure 2A. Using 
diffusion maps, we obtain an embedding that separate the 
original data into three clusters, but all of them are mixture of 
different groups; furthermore, one may have the wrong 
impression that the MRS is not capable of discerning these 
patients. This suggests a naïve distance measure is unsuitable. 
Density estimation is first performed on the original data 
(figure 2B and 2C), then incorporated into the distance 
measure as self-tuning factor. Figure 3 shows embeddings 
obtained with simple kernel and density based kernel.  

The classification is carried out on original data, principal 
component based representation (PCA), diffusion embedding, 
and diffusion embedding with density based kernel built in, 
respectively. The SVM is performed at least twenty times for 
each setting. The classification accuracy is listed in the table 1.  

Table 1. Classification accuracy using SVM 

 SVM Classification Accuracy 

Original 

Space 

PCA 

based 

Naïve 

kernel 

Density 

based kernel 

SCA3 65% - 75% 69% – 73% 81% – 90% 87% - 95% 

MSA 83% - 93% 48% - 51% 70% - 81% 72% - 79% 

Normal 65% - 73% 75% - 78% 50% - 65% 78% - 85% 

It is evident that the density based approach performed 

better than naïve kernel, especially in classifying normal 

subjects; and the performance of PCA based approach is 

inferior to that of density based kernel approach.  

Also, it is interesting to note that in comparison with the 

classification using original data, the accuracies of MSA 

decreased for all three other approaches, particularly in the 

PCA based one. The issue can be attributed to nonuniformaity 

of the dataset itself. We illustrate this by considering the 

embedding of the simulated data in figure 1C: as one embed 

the red group in to a more compact form, the structures of 

both green and blue group are becoming dispersive, leading 

to complications in identifying them. Such tradeoff between 

data structure and scattering removal is inevitable as one 

applies the dimensionality reduction method given the 

nonuniformity induced by random samples. In other words, 

the information of the compact group will leak into the 

relative sparse group; the larger the difference of the density 

between these groups, the more leakage from those originally 

compact structure.  

Based on such observation, we suggest that the density 

based kernel design is suitable for dealing data mixture where 

different groups are partially mixed with one another, as well 

as possesses nonlinearity induced by intrinsic nonuniformity. 

The drawback is that if the densities of distinct clusters differ 

significantly, the self-tuning kernel would develop a 

potentially false one way relation such that the affinities from 

sparse regions to compact groups are overly estimated, but 

not the contrary; this characteristic cause information leakage 

from originally compact and well defined structure, hence 

mollifying the rigidity of the original data. 

IV. CONCLUSION 

Based on the clustering properties of the diffusion maps, 

we analyze the clinical data in a lower dimensional space 

induced by distance measure of the diffusion maps. To adjust 

the nonuniformity introduced by the underlying distribution 

of the data, we estimate the local density of the data, and use it 

as self-tuning factor of the distance measure. This approach 

shows satisfactory results on both artificial data and 

metabolite concentrations obtained with MRS. The results 

also demonstrate that distance measure with scaling factor 

based on variance of local mean generally is more capable 

than a naïve kernel. 
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