
  

 

Abstract—This paper presents an approach to detection and 
segmentation of liver tumors in 3D computed tomography (CT) 
images. The automatic detection of tumor can be formulized as 
novelty detection or two-class classification issue. The method 
can also be used for tumor segmentation, where each voxel is to 
be assigned with a correct label, either a tumor class or non-
tumor class. A voxel is represented with a rich feature vector 
that distinguishes itself from voxels in different classes. A fast 
learning algorithm Extreme Learning Machine (ELM) is 
trained as a voxel classifier. In automatic liver tumor detection, 
we propose and show that ELM can be trained as a one-class 
classifier with only healthy liver samples in training. It results 
in a method of tumor detection based on novelty detection. We 
compare it with two-class ELM.  To extract the boundary of a 
tumor, we adopt the semi-automatic approach by randomly 
selecting samples in 3D space within a limited region of interest 
(ROI) for classifier training. Our approach is validated on a 
group of patients’ CT data and the experiment shows good 
detection and encouraging segmentation results. 

I. INTRODUCTION 

Liver tumor is one of the highest causes of death due to 
cancer. An accurate detection and proper segmentation of 
liver tumor from CT image is of high significance especially 
for early detection and diagnoses of cancer. Liver tumor 
segmentation can be formulized as a pattern recognition 
problem, where a given voxel is to be assigned a label, either 
a tumor or non-tumor class. A semi-automatic approach of 
liver tumor segmentation is applied in this paper. Previously, 
detection or segmentation of liver tumor is done by 
experienced clinicians, but it is too time consuming and 
subjective depending on the skills and experiences of the 
clinicians. Thus minimal user involvement with reliable 
detection and segmentation of liver tumors is highly aspired. 

Researchers in the past have investigated this topic.   
Masuda et al. [1] showed that by enhancing contrast levels 
and using the expectation maximization of the posterior 
marginal algorithm as well as a shape constrain, liver tumors 
can be detected even in poor CT images. Pescia et al. [2] 
proposed the use of advanced non-linear machine learning 
techniques to determine the optimal features, as well as the 
hyperplane that uses these features to separate tumor voxels 
from healthy liver tissues. Bilello et al. [3] showed that liver 
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tumor detection can be done by using intensity-based 
histogram method to find central lesions, followed by liver 
contour refinement to identify peripheral lesions. Hong et al. 
[4] proposed an automatic system to perform the liver tumor 
detection. Shape information is used to identify and 
recognize a lesion adjacent to the border of the liver and the 
lesion is extracted by means of Fuzzy C-means clustering 
technique. The proposed system performs a 3D consistency 
check based on three dimensional diagnoses to increase the 
recognition rate. Mala et al. [5] also adopted Fuzzy C-Means 
for tumor extraction followed by a tumor type classification. 
There are also works done by using other imaging devices. 
For example Optical imaging using Diffuse Reflectance 
Spectroscopy (DRS) can distinguish different tissue types 
(tumor/non-tumor) through a specific “optical fingerprint” 
[6]. A miniaturized optical needle was developed for the 
imaging. It is not based on conventional CT scan but in an 
intrusive way image tumor tissues directly.   

In tumor segmentation, Zhou et al. [7] had developed a 
semi-automatic approach using Support Vector Machine 
SVM) and propagational learning. In their method, a tumor 
contour of the initial slice is extracted by learning a SVM 
using randomly selected samples in a ROI from a 2D CT 
slice. With the morphological operations (dilation and 
erosion), the contours after dilation and erosion are projected 
to its neighboring slices. The region within the dilation 
contour gives the suspicious tumor region and the region 
within the erosion region serves as the positive tumor 
samples to train the SVM classifier. After the tumor region of 
the neighboring slices is detected, the algorithm is applied 
recursively on the next neighboring slice. In this way, the 
SVM classifier is trained and updated through propagational 
learning. Wong et al. [8] developed another method where a 
seed point is selected and its feature is generated. Then 2D 
region growing technique is deployed for liver tumor 
segmentation. Some knowledge-based constraints are taken 
into consideration to ensure the size and the shape of the 
segmented tumor can be properly accepted. Chen et al. [9] 
also proposed a Detect Before Extract system, which will 
automatically find the liver boundary. A neural network 
classifier is trained by using specially designed feature 
descriptor to distinguish normal liver and two types of tumor: 
hepatoma and hemageoma. Instead of locating and 
segmenting tumors using the texture features, it classified two 
types of liver tumors in relatively big 16x16 blocks.  

In our work, we propose to use the kernel based Extreme 
Learning Machine to detect and segment liver tumor voxels 
in CT scans. The kernel based ELM achieves a better 
performance compared to traditional ELM, and it is faster 
than SVM [10][13]. In the ELM training and testing, each 
voxel is associated with a feature vector which consists of a 
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set of image features, namely the mean and variance, entropy, 
Law’s features [11] and sum-and-difference histograms [12]. 
Minimal user involvement is designed to segment the liver 
tumor in a given CT volume. The user is required to select 
the tumor samples (positive samples) and/or the non-tumor 
samples (negative samples) at the beginning. Given those 
samples, an ELM classifier is learned for voxel classification, 
followed with morphological smoothing (erosion and 
dilation), a suspicious region of tumor is detected or 
segmented using this classifier. To ease the selection of 
tumor training samples, one class ELM is proposed for tumor 
detection where the user only needs to select healthy liver 
samples. We also apply the two-class ELM classifier for 
automatic liver tumor detection assuming some training 
tumor samples are available. Experiment testing shows 
encouraging results. 

II. BRIEF OF EXTREME LEARNING MACHINE 

A. Introduction 

Extreme Learning Machine [13] is designed as a single 
hidden layer feed forward networks (SLFN). It is shown that 
the learning speed is much faster compared to other learning 
algorithms such as SVM. The brief idea of ELM is illustrated 
in the following. Given N training samples {(xi, ti)}

N
i=1 where 

xi is the input feature vector and ti   {-1,1} is the 
corresponding target vector, the output of a SLFN network 
with L hidden nodes can be expressed as the following: 
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It can be written as f(x) = h(x)β. Here wi and bi denote the 
input weights and biases to the hidden layer respectively, βi is 
the output weight linking the i-th hidden node to the output 
layer and g(·) is the activation function of the hidden nodes. 
Equation (1) can be written in a matrix form as Hβ= T, 
where 
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β= [β1 … βN]’ and T = [t1 … tN]’. 

The input weights and hidden biases can be assigned 
arbitrarily so that H  does not need to be tuned. To train such 
an SLFN is simply equivalent to finding a least-square 
solution by using Moore-Penrose generalized inverse: 

 β̂ H†T,                                    (2) 

where H† = (H’H)-1 H’ or H’ (HH’)-1, depending on the 
singularity of H’H or HH’. 

B. Kernel ELM 

In a newly developed kernel ELM [13], a positive 
regularization coefficient is introduced into the learning 
system to make it more stable. Assume H’H is nonsingular, 
the coefficient 1/λ is added to the diagonal of H’H in the 

calculation of the output weights β. The resultant solution is 
more stable and with better generalization performance. We 
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function of the regularized ELM is: 
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It has been shown [13] that a kernel matrix for ELM can 
be defined as follows. Let ΩELM = HH’ ΩELMi,j = h(xi)h(xj) = 
K(xi, xj). The output function of ELM can be written 
compactly as: 
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In this implementation, the hidden layer feature mapping 
h(x) need not to be known to users, instead its corresponding 
kernel K(u,v) can be computed. Here the Gaussian kernel is 
used, K(u,v)= exp(-γ||u-v||2). 

III. LIVER TUMOR DETECTION AND SEGMENTATION 

A. Preprocessing 

Since the texture features of liver tumor vary from slice to 
slice and tumors of different patients have different 
characteristics, in this paper, different from previous works 
where only the voxels on a certain slice is used to construct 
the training dataset, we select the voxels from three planes: 
coronal, sagittal, and transversal planes. Then the features of 
the voxels on these three planes are generated and a training 
dataset is constructed using these features for ELM classifier 
training. With a proper selection of threshold for the outcome 
of the classification results, each voxel is labeled as either 
tumor and or non-tumor class. We tested this classifier on the 
region of suspicious tumor of each slice. This method mainly 
consists of four parts: pre-processing of the CT image scans, 
feature generation of the positive and negative samples (for 
tumor detection with one class ELM, only healthy liver 
voxels are used), training and testing of ELM, and post-
processing to refine the segmentation result. 

The original CT images of different sessions may have 
different contrast and CT images also contain procedure 
noise. The contrast adjustment is done simply by normalizing 
the window level and range around liver intensity histogram. 
Following that, we adopted a noise suppression procedure 
based on Block Matching 3D Sparse Transform Domain 
Collaborative Filtering (BM3D) [14]. The filtered blocks are 
then returned to their original positions. Because these blocks 
overlap with each other, many different estimates were 
obtained for each pixel. These estimations are combined 
together later. The result is a 3D estimate that consists of the 
jointly filtered grouped image blocks. Here, aggregation as a 
particular averaging procedure is exploited to take advantage 
of this redundancy. 
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B. Feature Extraction 

For each voxel sample, its texture features are generated 
in terms of its neighborhood mean and variance, intensity, 
intensity power, entropy, intensity co-occurrence, Law’s 
texture [11], and Sum and Difference Histogram [12]. These 
features are generated in 3D volume  that makes them more 
representative. For example, a cubic of 5x5x5 voxels is used 
to calculate the corresponding feature vector for the center 
voxel in the cubic. For each positive or negative voxel 
sample, 22 different image features were generated. Both 
positive and negative data are prepared in the same way. 
ELM classifiers are subsequently trained using these samples. 

C. Tumor detection 

Two-class ELM training and testing: In tumor detection 
with cross-validation, the ELM is trained with training 
samples from two classes i.e., tumor and non-tumor, of which 
the ground truth data are annotated by clinicians. We have 
CT data from 7 patients, total 20 tumors. In cross validation, 
one of the patient CT data is excluded while the rest patients’ 
CT data are used for the two-class ELM training. In testing, 
automatic tumor detection using the ELM is applied to the 
patient’s CT. All detection results will be summarized (as in 
Table 1). 

One-class ELM for tumor detection: For each patient, 
only healthy liver voxels are randomly selected from his/her 
CT data as the normal liver class.  Hopefully it can 
characterize the healthy liver voxels effectively so at the 
same time it is able to detect lesion voxels, i.e., tumors as 
abnormal ones. As we have no tumor samples for training, 
the performance of tumor segmentation may degrade, 
compared to two-class ELM. But it could be useful to detect 
tumors that may not fulfill the features of the trained tumors. 
Although the training dataset is incomplete, the work shown 
here proves that the learnt one-class ELM is capable of 
detecting most of the tumors. We have tested the tumor 
detection using conventional ELM and kernel ELM for one-
class classifier training. Results show that kernel ELM 
performs better in characterizing the healthy liver voxel.  
Consequently, it detects more tumors without increasing the 
false positive errors. 

ELM was designed for two class classification and 
regression. However when only one class data  is used for 
ELM training, we show that it can be considered as a one-
class classifier. By examining Equation (1) and (2), we see 
that f(x) is the least mean square solution for given input g(x) 
and T. Let’s assume tj=1, which means only one class data is 
used for training. The result β becomes a linear 
approximation mapping g(·) to T. In geometry, it is a hyper 
plane approximation. Then it can be shown that the 
difference |f(x)-1| is the distance of any point (a sample, in 
either class) to the hyper plane constructed by the ELM. Thus 
if the hyper plane can be used to represent one class, any 
point away from the plane will indicate that it is not in the 
same class, which means we can use it to detect novelty. 

In the original ELM, as it is only a linear transformation, 
the one-class mapping is not represented accurately using the 
hyper plane. The detection result is thus not satisfying. With 
the kernel transform [10] the data is mapped to a higher 

dimension space, similar to many other kernel methods, the 
two-class data are actually separated. By measuring the 
distance |f(x)-1|, it shows that the ELM is able to detect tumor 
based on the one-class training.  

D. Tumor segmentation 

 Tumor segmentation extracts the boundary of a tumor, 
which is useful for tumor volume estimation, tumor 
diagnosis, treatment and prognosis. 

Fully automatic tumor detection method using generic 
features and ELM classifier cannot achieve satisfied 
segmentation results. The boundary is far from accurate 
although most of the tumors can be detected because part of 
their voxels can be detected as tumors. In this paper we 
propose an alternative approach to semi-automatic tumor 
segmentation. Instead of using 3D propagation of 
segmentation [7], we apply the tumor sampling in 3D space 
and increase the feature representation of the voxels. With 
the scheme, we reduce the user intervention without the 
requirement of resampling and retraining at some slices in the 
3D propagation step [7].  

Cross the experiments, we found that the regularization 
parameter λ in (4) is not very sensitive. In our experiments, 
the regularization parameter is given as λ =1. We use 
Gaussian kernel with γ=100. 

IV. RESULTS AND DISCUSSION 

We use the sensitivity (S) and false positive (FP) error to 
measure the performance of tumor detection. To measure the 
segmentation performance, the metrics proposed in [15] are 
used: Volume Overlapped (VO), Volume Difference (VD), 
Average Symmetric Surface Distance (ASD) and Root Mean 
Square Symmetric Surface Distance (RMSD) and Maximum 
Surface Distance (MSD).  

Fig. 1 shows tumor detection results by one-class ELM. 
The corresponding ELM output of the image is shown in the 
second row. It can be seen that with a proper threshold (the 
distance to the hyperplane), the tumors can be detected. 

  

 

 

 

 

 

 

 

 

  

Fig. 2 shows some of the detection results using cross-
validation. The detection (in green contour) is superimposed 
to the original CT image, with the tumor ground truth in red. 

  

   

     
  
Fig. 1. Tumor Detection using One-Class Kernel ELM. Top row shows 

the original CTs with ground truth tumor labels. Bottom is the ELM 
map and the detection results. 
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Fig. 2. Images with tumor detection using two-class kernel based ELM. 

To show the overall performance, we plot the figure of FP-S 
for both one-class and two-class kernel based ELM tumor 
detection results (Fig. 3). From the figure we can see that 
although two-class detection performs better, one-class ELM 
provides a way for tumor detection which does not need the 
tumor samples. Further test shows that one-class ELM can 
only be properly trained using kernel ELM. It outperforms 
the conventional ELM in one-class tumor detection as the 
output for the later is not able to distinguish the tumor and 
non-tumor voxels. 

 
Fig. 3. ROC curves for tumor detection by kernel based ELM. 

Given a detected tumor, we can further applied the semi-
automatic tumor segmentation method based on the kernel 
ELM by selecting the training samples from 3D views per 
tumor. The table below summarizes the result over all the 
tumors. Fig. 4 shows some segmentation results (green) using 
two-class ELM overlapped with ground truth (red) of tumors. 
The poorly segmented tumors are mainly those with voxels 
that look like vessels (white voxels in the tumor). 

Table 1. Metrics of tumor segmentation by two-class ELM. 

Metrics VO (%) VD (%) ASD 
(mm) 

RMSD 
(mm) 

MSD 
(mm) 

mean 67.15 14.16 2.27 2.47 8.46 
max 85.72 50.39 11.92 12.35 20.62 
min 20.49 1.36 0.98 1.03 3.5 

The mean VO of tumor segmentation is 67.15%. The 
improvement over traditional ELM in mean VO is 5%. 
Compared with [7], the performance degrades slightly. One 
possible reason is due to that the algorithm used here does 
not involve further user interaction to correct any poorly 
performed segmentation for each slice. The advantage is that 
our method does not need to supervise the segmentation slice 
by slice. 

V. CONCLUSION 

We have proposed approaches to automatic liver tumor 
detection and semi-automatic segmentation from CT scans 
using the kernel based Extreme Learning Machine. We also 
investigated different methods for the detection. We have 
showed that the method proposed has a promising 
segmentation and detection performance. Due to the nature of 
ELM, the training speed is very fast. In tumor detection, we 
proposed to adopt the ELM as one class learning machine. 
We showed that the mapping function f(x) is a specific 
regression function that approximates a hyper plane in the 

high dimensional space mapped by ELM. The distance 
between f(x) and the label indicates the class type. The one-
class ELM shows that it is possible to detect tumors even 
there is no tumor data for training. We have also compared 
the performance of one class tumor detection and two-class 
ELM using cross validation detection. The latter showed a 
relatively higher accuracy due to more tumor information 
available. The advantage of one-class ELM is that it could 
serve as a preliminary detection scheme, particularly in the 
case some unknown or new tumor is not well trained or 
represented by a two-class classifier. 

       
Fig. 4. Tumor segmentation result.Left two show the good segmentation. 
Right two shows the results of the tumors that have ‘vessel’ like voxels. 
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