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Abstract – Capsule Endoscopy is a technique designed to 
wirelessly image the small intestine within the gastrointestinal 
(GI) tract. Its main drawback is the vast amount of images it 
generates per patient, necessitating long screening sessions by 
the clinician. Previous studies have proposed to partially 
facilitate this process by automatically segmenting the GI tract 
into its constituent organs, thus identifying the region of 
interest. In this work, we propose to exploit the anatomical 
structure of the GI tract when carrying out dimensionality 
reduction on visual feature vectors that describe the capsule 
images. To this end, we suggest a novel adaptation of a 
technique called Locality Preserving Projections, and results 
show that this achieves an improved performance in organ 
classification and segmentation, at no additional computational 
or memory cost. 

I. INTRODUCTION 

Wireless Capsule Endoscopy (WCE) was introduced by 
Iddan et al. as a non-invasive medical procedure which 
allows physicians to examine the small intestine within the 
gastrointestinal (GI) tract [1]. The procedure simply involves 
the patient swallowing a small capsule, such as that shown in 
Figure 1, which then travels down the GI tract by peristalsis 
[2]. The capsule, equipped with a battery powered camera 
and two miniature LED light-sources, takes two to four 
pictures per second and transmits them wirelessly to a belt 
strapped to the waist of the patient. A collection of image 
frames showing the internal structures of the small intestine 
are thus collated into a video, and the physician then 
examines these to diagnose any present pathologies such as 
internal bleeding, Crohn’s Disease, ulcers or polyps [3]. 

Over the course of the eight-hour examination, the 
capsule generates approximately 50,000 images [4], which 
need to be examined one by one by the physician. Needless 
to say, automation in this regard would be greatly 
appreciated, especially on two particular fronts. Firstly, a 
quick and automatic discrimination between organs in the 
gastrointestinal tract would allow the physician to home in on 
the organ of interest. Secondly, automatically identifying 
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images that are suspect positives for pathologies reduces the 
chances of physicians missing out on important details, and 
further speeds up the process of diagnosis. 

Physicians presently spend roughly 2 hours to examine 
capsule endoscopy videos [5], and the software solutions 
supplied by manufacturers provide only a very basic assistive 
feature to identify frames having increased redness as suspect 
candidates of internal bleeding [6]. Previous studies have 
proposed image processing techniques to facilitate the 
screening process, both in terms of GI organ segmentation 
and pathology detection. Unfortunately however, such 
techniques have not yet found their way onto physicians’ 
computers in the form of commercially available software. 

When considering GI organ segmentation in particular, 
studies by Mackiewicz et al. [3] and by Cunha et al. [8] have 
shown that algorithms based on feature extraction and 
classification achieve a good level of accuracy when 
classifying images. The same authors also propose boundary 
detection methods based on local topographic features, which 
locate the junctions between the stomach and small intestine 
(pylorus valve) and between the small intestine and colon 
(ileo-cecal valve). Their reported results were also 
satisfactory, although the authors confirm that there is room 
for improvement [3] [8], particularly since physicians were 
noted to be more accurate (by up to ~ 1500 frames) than their 
automated counterparts at distinguishing between organs.  

Studies such as those by Mackiewicz et al. and Cunha et 
al. base their classification primarily on the local topographic 
features (such as edges and colour distributions) of the 
capsule images. While such methods certainly yield 
promising results, they do not exploit the anatomical 
topology of the gastrointestinal tract. In this work, we 
postulate that this topology imposes an intrinsic ordering on 
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Figure 1 - The capsule used for the procedure. Source: [7] 
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the capsule images, and that there may be benefits in 
exploiting this. The method known as Locality Preserving 
Projections (LPP) provides a mechanism to encode adjacency 
relations between data [9], and may therefore be adapted to 
encode the physical adjacency between the capsule images. 
Such adjacency would reflect the anatomical topology and 
feature-based similarities that are present between them, and 
LPP may then be used to reduce the feature dimensionality 
while preserving this encoded local structure. Our results 
indicate that taking advantage of the information encoding 
the anatomical structure of the GI tract leads to an improved 
accuracy of classification, and in improved boundary 
detection, regardless of the type of feature descriptor tested.  

The rest of this paper is organized as follows. Section II 
describes the visual features extracted, as well as the 
proposed method for dimensionality reduction. It then 
describes the methods employed for image classification and 
segmentation. Section III will present and discuss the results 
obtained for classification and segmentation, particularly 
when compared to those of previous studies. Section IV will 
then provide some concluding thoughts. 

II. METHODOLOGY 

A dataset of six patient videos, or approximately 360,000 
capsule endoscopy images, were available for this study. The 
videos were split into three sub-groups in order to implement 
three-cross-fold validation and thus to maximize the 
significance of the results. In each experiment therefore, two 
sub-groups were used for training, and the third was used for 
testing. For classification tests, random subsets of 1200 
images were taken for each of the stomach, small intestine 
and colon and used for training. Similarly, random subsets of 
images taken from two organs in the third sub-set were then 
collated into one clip for testing. For boundary detection 
tests, the same training sets were used, and short clips 
showing the capsule traversing the junction of interest were 
then taken from the third subgroup and used for testing.  

A. Feature Extraction 

This work proposes to use LPP to reduce the 
dimensionality of data by exploiting the anatomical topology 
of the GI tract. It is intended as a direct replacement for 
principal component analysis (PCA), a standard technique 
which was used by Mackiewicz et al. for dimensionality 
reduction and data compression in [3]. To this end, the 
features chosen for data representation in our work are 
similar to those used in [3], and a direct comparison of 
dimensionality reduction techniques was carried out by 
simply replacing the use of PCA with that of LPP.  

Hue-Saturation Histograms 

Hue-Saturation (HS) histograms are colour-based features 
which were first applied to capsule endoscopy by Berens et 
al. in [10]. HS histograms primarily exploit the difference in 
hue between stomach, small intestine and colon images, 
which varies between pink and green respectively for these 
organs. Images are first converted from the RGB to the HSI 
domain, and intensity information is then immediately 
discarded, since this varies significantly in relation to the 
capsule’s distance from the intestinal lumen. A joint 2D 

histogram is then constructed for each image by plotting 32 
bins for hue against 32 bins for saturation, as shown in Figure 
2. The histogram structure is then compressed using the 
Discrete Cosine Transform, and the first 136 coefficients 
corresponding to the lower frequencies are retained for later 
dimensionality reduction and classification. 

Local Binary Patterns 

Local Binary Patterns is a technique used for texture 
analysis and classification. It evaluates the local variation 
around a particular pixel in the form of binary number. To 
calculate the LBP value for a particular pixel p, its N 
neighbours, ni, i =0…, N – 1, are compared to its own value, 
to establish whether they are greater or smaller than p [3]. 
Each ni is therefore mapped onto a value bi as follows: 

  (1) 

The LBP value for the said pixel is then formed as an N-
bit binary number by concatenating all binary values bi 
together as follows:  

  (2) 

 LBP values may be plotted to display textural features 
such as edges, as shown in Figure 3. However, a 7-bin 
histogram of the LBP values is typically used as a feature 
vector to characterize the textural content for a particular 
image [3]. In [11], Connah and Finlayson extended the 
technique to consider colour and texture, by separately 
applying LBP on all the colour channels and then combining 
their LBP histograms into a 1D or 3D feature vector. Both 
types of histograms were tested by Mackiewicz et al. in [3], 
though in this work, our chosen feature vectors are 1D 
histograms made of 21 bins (7 bins x 3 colour channels), due 
to the latter performing better on our dataset.  

 

 

 

 

 

 

 

Figure 2 – [Left] A typical capsule image taken from the stomach.
[Right] The corresponding HS histogram for the said image. 

Figure 3 – [Left] Original colour image containing red, green and blue 
components; [Right] Textural features extracted from red component after 
application of LBP operator. 
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B. Dimensionality Reduction  

Following extraction of descriptive features from the 
images in the form of HS and LBP histograms, Mackiewicz 
et al. applied dimensionality reduction using PCA to the 
feature vectors in each case [3]. Dimensionality reduction has 
a two-fold effect; firstly, it allows for compression of the 
data, since it permits redundant variables that contain 
uninformative information to be identified and discarded. 
Secondly, it provides an alternative representation of the data 
in the hyperspace, and this may further accentuate the 
differences between images from one organ and another. The 
end result could then be an improved accuracy for the 
classification algorithm. Thus, similarly to [3], we applied 
PCA to both HS and LBP histograms, and to combinations of 
both, prior to classification. The results formed a baseline 
against which to compare our proposed technique. 

Locality Preserving Projections 

Locality preserving projections is a technique which may 
be considered similar, and thus, an alternative to PCA. The 
important difference however is that LPP optimally preserves 
the local neighbourhood structure of the data set through the 
creation of linear projective maps [9]. Similarly to PCA, it 
attempts to solve the problem of dimensionality reduction by 
finding a transformation matrix A that maps a set of m points, 
x1, x2, … xm, in Rn to another set y1, y2, … ym, in Rl, whereby 
l << m [9]. The local neighbourhood structure of the data is 
defined a-priori by constructing an adjacency graph, where 
two nodes are connected by an edge if they are close to each 
other. This ‘proximity’ may be defined in standard ways such 
as -neighbourhoods or k-nearest neighbours [9]. 
Alternatively however, one might define a more utilitarian 
form of adjacency, which bests suits the data at hand. 

In our work, we take a heuristic approach to constructing 
the adjacency matrix, and exploit the anatomical topology of 
the gastrointestinal tract. Consider for a moment, the various 
capsule images belonging to different individual organs, and 
thus sharing ‘global’ features. Taking colour for instance, 
previous studies have shown that stomach images have a 
common pinkish hue; small-intestine images share a pinkish-
yellow hue, whereas colon images share a greenish hue. One 
might therefore propose that images belonging to a particular 
organ have similar global characteristics, and thus share a 
class adjacency. Similarly then, if one considers a brief time-
window of images, representing a short distance being 
traversed by the capsule, one notices that these would share 
similar local characteristics since the change in scene 
between one image and the next would be minimal. Thus we 
might propose that such images share a certain temporal 
adjacency. These concepts are aptly depicted in Figure 4. 

We propose to describe class adjacency and temporal 
adjacency mathematically, by defining two separate and 
symmetric N  N square matrices, WCA and WTA. Multiplying 
these matrices together yields the adjacency matrix, which 
itself defines which nodes (or capsule images) in the graph 
are connected by an edge, and thus ‘neighbours’. 

  (3) 

 

 

  (4) 

In equations (3) and (4), i and j are the matrix row and 
column indices, while  is the temporal adjacency window 
size. N is the size of the square matrix, and also the number 
of images making up a training set. Both matrices are 
multiplied together, and weighted using a standard heat-
kernel matrix. This assigns the graph edges a weight, based 
on the similarity of content between two different images. 

C. Image Classification and Boundary Detection  

Classification was implemented using a Support Vector 
Machine (SVM) having a radial basis kernel, as in previous 
studies [3], [4], [10]. As described in Section I, three-cross-
fold validation was carried out, and in each run, sequential 
feature selection was used to identify the best features from 
the reduced hyperspace returned by the dimensionality 
reduction techniques. Boundary detection was implemented 
using the method devised by Igual et al. in [14]. The labelled 
sequence returned by the classifier was compared to a step 
function, and the best fit gave an indication of the likely 
position of the boundary between two organs. 

III. EXPERIMENTAL RESULTS 

The results for image classification are shown in Table 1, 
whereby the accuracies obtained when describing images 
using HS and LBP histograms and combinations thereof, are 
shown. The table compares the performances obtained when 
using PCA and LPP to reduce the dimensionality of the 
feature vectors prior to classification. For LPP, the results 
show a consistent increase in accuracy when classifying 
images across a stomach – small intestine interface, and a 
very similar accuracy when classifying images across a 
small intestine – colon interface. Such an improvement is 
attributed to LPP being able to achieve tighter and more 
distinct clusters for different classes, thus providing a 
discriminating advantage to the classifier that follows. 
Experimental results further suggest that the improvement in 
classification accuracy is achieved using only a few 
dimensions. Figure 5 shows such an example for LBP, 
whereby the improvement in accuracy is noticed to peak and 
remain roughly constant after the second or third dimension. 
 

Figure 4 – Depiction of class adjacency within organs (red, yellow and
green sections), and temporal adjacency as the capsule travels through the 
said organs (blue 'time-windows'). Source: Modified from [13]. 
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 Stomach – Small Intestine Small Intestine - Colon 

Feature PCA LPP PCA LPP 

HS  90.28 92.14 99.33 97.42 

LBP 67.42 86.33 58.98 94.42 

HS_LBP 90.47 92.58 99.33 97.86 

 
Table 2 – Deviation in Boundary Detection (Mean and Median Error) 

 Pylorus Valve Ileo-cecal Valve 
Feature Mean Median Mean Median 

 PCA LPP PCA LPP PCA LPP PCA LPP 

HS  186 68 215 81 13 27 8 31 

LBP 168 182 119 185 243 23 278 13 

HS _LBP 148 112 134 90 101 36 3 29 

 
Locality preserving projections also shows an 

improvement in the trials for boundary detection, since it led 
to smaller mean and median deviations from the expert-
annotated boundaries when compared to principal component 
analysis, as shown in Table 2. The use of LPP showed an 
improved performance specifically for the pylorus valve, 
whereas similar performance was achieved for the ileo-cecal 
valve. This increased performance may likely be attributed to 
the increased accuracy achieved with dimensionality 
reduction prior to classification, since the improvements 
appear to closely mirror those of the first stage image 
classification trials, where LPP outperformed PCA. 

When comparing the results obtained from both the 
image classification and boundary detection trials to the 
results reported by Mackiewicz et al. in [3], we note that 
there is general agreement in the image classification trials, 
particularly for the HS histograms and their combination with 
LBP histograms, since the accuracies obtained were in excess 
of 90%. Considerable variation was however noted when 
comparing the accuracies obtained with 1D LBP histograms 
on their own, as a difference of over 20% was present when 
using PCA for dimensionality reduction. In view of this, one 
should question whether some textural bias is present in the 
results, potentially derived from the use of this particular, 
much smaller data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 

LPP may indeed appear to be a suitable candidate which 
could replace the use of PCA for dimensionality reduction of 
visual descriptors in the field of capsule endoscopy. This 
study has shown that the anatomical topology of the GI tract 
appears to contain important information that may be taken 
advantage of within the framework of LPP. The use of an 
adapted adjacency matrix that takes into account the class 
adjacency and temporal adjacency of capsule images, seems 
to have improved the accuracy of image classification and 
reduced the error in boundary detection. Furthermore, in 
comparison to PCA, the said improvements appear to come 
at no additional memory or computational cost, since the 
number of dimensions required to maximize classification 
accuracy appear to be similar to those of PCA. However, 
further validation of the test results should take place by 
applying the proposed technique on larger data sets, in order 
to test robustness against larger amounts of data variability. 
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Figure 5 – Classification accuracy of an SVM classifier, after dimensionality
reduction of HS + 1D LBP feature vectors is carried out with PCA and LPP. 
Dark green graph: LPP window size = 7. Light green: LPP window size = 2. 

Table 1 – Accuracy of Image Classification (%) 
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