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Abstract— This paper proposes a robust multiobjective evo-
lutionary algorithm (MOEA) to optimize parameters of tumor
segmentation for ultrasound breast images. The proposed al-
gorithm employs efficient schemes for reinforcing proximity to
Pareto-optimal and diversity of solutions. They are designed
to solve multiobjective problems for segmentation accuracy
and speed. First objective is evaluated by difference between
the segmented outline and ground truth. Second objective is
evaluated by elapsed time during segmentation process. The
experimental results show the effectiveness of the proposed
algorithm compared with conventional MOEA from the view-
point of proximity to the Pareto-optimal front (improved by
16.4% and 12.4%). Moreover, segmentation results of proposed
algorithm describe faster segmentation speed (1.97 second) and
higher accuracy (8% Jaccard).

I. INTRODUCTION

Computer-aided detection/diagnosis (CAD) supports a
clinical decision to provide second opinion to radiologist
from medical images such as X-ray, CT, ultrasound images. It
extracts contour of lesion by finding an outline pixel of object
in the image. In other words, CAD system contains seg-
mentation module for outline detecting of suspicious lesion.
The radiologist extracts precise features and diagnose more
correctly as the segmentation of tumor is more accurate.

There have been conventional researches on image seg-
mentation [1]–[3]. Active contour model is one of the
representative segmentation algorithm [1]. Basically, active
contour model searches the outline iteratively which has the
largest difference of intensity between inside and outside.
Level set algorithm has shown robust performance as a
representative segmentation technique even though edge of
lesion was not clear [2], [3]. It expends outline iteratively
until it finds the outline satisfying energy function is zero.

The performance of the level set algorithm depends on
several parameters of the energy function including global
(local) energy term, smoothness term and edge term [4]–[6].
Usually, the parameters which are robust to image data set
of large scale have been adjusted by developer with time
consuming. Thus, automatic parameter optimization skill is
required such as evolutionary algorithms [7]–[11].

The segmentation algorithms should satisfy higher accu-
racy. Segmentation speed is an another consideration since
radiologist has to deal with a lot of medical images of
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patients per day. Also, processing time of each slice for 3D
volume data is important factor. Thus, the aim of optimizing
segmentation algorithm in medical image is that it should
segment the outline of tumor accurately and find it as soon
as possible. The difference of segmented lesion compared
with ground truth should be minimized for former objective,
whereas elapsed time during the segmentation should be
minimized for the latter objective. There was a research for
multiobjective image segmentation using quantum-inspired
evolutionary algorithm [12]. The authors considered two
objectives: intra-region homogeneity and inter-region hetero-
geneity. They focused on split/merge strategy using clus-
tering algorithm however they did not consider speed for
segmentation.

Multiobjective evolutionary algorithm (MOEA) can solve
these problems efficiently by utilizing a concept of Pareto-
optimal solution. The growing interest in highly complex
real-world problems has motivated the growth of MOEAs
[13], [14]. The nondominated sorting genetic algorithm
(NSGA) was proposed [13] and improved as NSGA2, which
is a strong elitist method with maintaining diversity effi-
ciently using nondominated sorting and crowding distance
[14].

This paper proposes reinforcing proximity evolutionary
algorithm (RPEA) for optimizing tumor segmentation of
ultrasound breast images. It includes new metrics to enhance
traditional ranking and measuring diversity of the solutions in
population. First metric makes evolution process focus on the
proximity to the Pareto-optimal front and second metric mea-
sures density of solutions. Proposed two metrics can compare
the superiority of each solution for sorting and overcome the
weakness of traditional algorithms. Moreover, two-objective
functions in terms of accuracy and speed are designed in
the paper. The obtained solutions by proposed algorithm are
verified through plotting the solutions in objective space and
showing segmented images examples.

This paper is organized as follows. Section II presents
schemes of proposed algorithm. Section III describes exper-
imental environment such as the ultrasound data acquisition,
target parameter for optimization, definition of fitness func-
tions and parameters for MOEA. In Section IV, experimental
results demonstrate the effectiveness of proposed algorithm
and various cases according to obtained parameter setting.
Finally, concluding remarks follow in Section V.
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II. PROPOSED ALGORITHM

In the real-world, user tends to select solutions satisfying
multiobjectives (accuracy and speed) simultaneously [17]. In
other words, the radiologist avoids to use too inaccurate or
slow segmentation processor. Therefore, proposed scheme in
this section reinforces the proximity to Pareto-optimal front
by disregarding extreme solutions.

A. Reinforcing Proximity

Most MOEAs rank or sort the solutions according to
domination relation. Solution A and B in Fig. 1 are in-
different by definition of domination. In other words, they
are neither dominated nor dominate each other. No solution
is better theoretically, however solution A is much valuable
than solution B in real-world application. The reason is that
first fitness value (f1) of solution A is much better than that
of solution B while second fitness value (f2) of solution
A and B are similar relatively. In this case, user will select
solution A and it is closer to the origin. In order to deal with
this case, proximity metric P to distinguish better solution
is proposed as follows:

PA(A,B) =
N∑

k=1

(fA
k − fB

k )

1 + (fA
k + fB

k )
(1)

where N is the number of objectives. fA
k and fB

k are kth

objective values of solution A and B. It measures related
distance between two solutions. The smaller PA is better
for minimization problem and vice versa.

Fig. 1. Comparison of indifferent solutions for reinforcing proximity.

B. Enhanced Diversity Metric

Conventional diversity metric of solutions (e.g. cuboid
distance [14]) could not differentiate more diverse solution
in particular cases. It refers distance in the vicinity of the
solution (in intra-cluster) however distance between inter-
clusters was not considered. For instance, solution C and
D have same cuboid distance however solution D is much
valuable than C from the unique viewpoint. In other words,
the solution in the least crowded area is the best. Thus, diver-
sity metric to distinguish such case using Euclidean distance
between every solution is proposed. Following metric D can

recognize that the solution D has better diversity than C
because neighbors in the vicinity of the solution D are less
crowded than C.

Di =
n∑

j=1

√√√√ N∑
k=1

(f i
k − f j

k)
2 (2)

where n is the number of solutions in a population. f i
k is

kth objective value of ith solution.

Fig. 2. Comparison of solutions to overcome the limitation of conventional
diveristy metric.

C. Procedure of proposed algorithm

This paper proposes reinforcing proximity evolutionary
algorithm (RPEA) to enhance proximity of solutions to
Pareto-optimal front with preserving the diversity. Fig. 3
shows the whole procedure of RPEA. Each step is described
in detail as follows.

Procedure RPEA
Begin
i) Initialize parent population of size n
ii) while (not termination condition) do

begin
iii) Make offspring population by perturbation
iv) Evaluate solutions in merged population of

parent and offspring
v) Sort merged population based on P and D
vi) Select top n solutions as a parent

end
end

Fig. 3. Procedure of RPEA.

i) Parent population is initialized randomly.
ii) Until the termination condition is satisfied, it runs in the

while loop. The termination criterion is maximum number of
generations.
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iii) Perturbation techniques such as crossover and mutation
to make offspring solutions are applied.

iv) 2n population is created by merging parent and off-
spring population and evaluated.

v) The merged population is sorted by proposed two met-
rics. For multiobjective minimization problem, the solution
with negative and smaller P is better for first comparison
criterion. If the solutions are similar (0 < P < ϵ), the
solution with larger D is better for second comparison
criterion. ϵ means threshold for similarity tolerance of each
solution and it adjusts preserving the diversity at evolution
process.

vi) Only top n solutions are survived as parent solutions
in the next generation to inherit better characteristics of
solutions.

III. EXPERIMENTAL ENVIRONMENT

A. Ultrasound Breast Images

Pool of ultrasound breast images have 5,252 breast tumor
images from the Samsung Medical Center, Seoul, South
Korea between 2006 and 2011. The mean age of be-
nign/malignant cases was 45/49 years, and the age range was
from 11/24 to 81/86 years. 2,757 benign and 2,495 malignant
cases were considered. Images were generated by using a
Philips ATL iU22 ultrasound machine and the size of each
image was 1024 × 768 pixels with a spatial resolution of
0.23 mm/pixel.

B. Target Parameters and Fitness Evaluation

The region-based active contour model with point classifi-
cation which is one of the recent segmentation algorithm was
used for fitness evaluation [18]. Parameters (the number of
maximum iterations, α, β, λ(=λ1=λ2)) of energy function
defined in eq. (11) in [18] were optimized by proposed
algorithm. The equation consists of global, local and smooth
term without edge term.

Two objective functions for fitness evaluation are defined
as follows:

f1 = 1− Jaccard (error rate) (3)
f2 = Elapsed time (speed) (4)

The error rate for accuracy was measured by Jaccard
which is the ratio of intersection with union of segment
result of pixel with the ground truth. Segmentation speed was
measured by elapsed time during the segmentation process.
Each objective value was averaged per each image.

C. Parameters for MOEA

Population size was 10 and the number of generations was
20 for NSGA2 and proposed RPEA. Adaptive mutation for
real number was used with dynamic mutation probability.
The mutation probability was decreased from 0.2 to 0.1
according to generation increase. Threshold for similarity
tolerance (ϵ) was 0.5. 10 ultrasound images which were
randomly selected in breast tumor image pool were used
to optimize the parameters since a lot of images need
plenty of time to evaluate the fitness. Tests were run on

a personal computer with Intel core i5, 2.67GHz CPU and
4GB memory. Seed ellipse indicating tumor detection were
described by radiologists.

IV. RESULTS

As a results, the solutions of RPEA were closer to Pareto-
optimal front than those of NSGA2 as described in Fig. 4.
Solution 3 of RPEA improved the performance as higher as
16.40% and 12.40% than Solution 1 and 2 of NSGA2 in
terms of proposed metric P , respectively. It means proposed
RPEA found better solutions by reinforcing the proximity
from the point of view of accuracy and speed for segmenta-
tion at the same time.

Fig. 4. Obtained solutions from NSGA2 (including solution 1 and 2) and
RPEA (including solution 3).

Segmentation results of solution 1 which focused on the
accuracy, solution 2 which focused on the speed and solution
3 which optimized both are shown in Table I and Fig. 5.
User could select any parameter setting of obtained solutions
for segmentation as his/her preference. For instance, more
accurate segmentation processor will help beginners and
the faster one will be useful for experts. Solution 3 from
proposed RPEA applied to second breast image as shown
in Fig. 6 was obtained with better performance in terms
of speed (f2) compared with solution 1 and accuracy (f1)
compared with solution 2. For instance, solution 1 and 3
described similar outline of tumor however solution 3 was
much faster than solution 1 (1.97 second on average) and
more accurate than solution 2 (8% Jaccard) as shown in
Table I. Therefore, user would select the parameter setting
of solutions by using proposed RPEA rather than NSGA2
which are much valuable for user in real-world applications.

V. CONCLUSIONS

In this paper an evolutionary multiobjective optimization
(EMO) technique was employed to find set of optimized
parameters for ultrasound image segmentation, which were
satisfying two objectives at the same time. As a novel EMO,
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Fig. 5. Segmentation results of ultrasound breast images obtained from NSGA2 and RPEA.

Fig. 6. Segmentation results for second breast image in Fig 5.

TABLE I
OBJECTIVE VALUES OF SOLUTIONS OBTAINED BY NSGA2 AND RPEA.

1-Jaccard (f1) Elapsed time (f2)
Solution 1 (NSGA2) 0.2861 7.7611
Solution 2 (NSGA2) 0.3556 5.7596
Solution 3 (RPEA) 0.2756 5.7906

the reinforcing proximity evolutionary algorithm (RPEA)
was proposed to find out efficient parameter sets of active
contour model. The proposed RPEA was based on strength-
ened proximity to the Pareto-optimal front and calculation of
distance between the entire solutions. For the performance
evaluation, RPEA was applied to the tumor segmentation
problem of ultrasound breast images. As a results, RPEA
generated more practical solutions with better proximity to
Pareto-optimal front than the conventional algorithm. More-
over, various parameter settings optimized were compared in
terms of describing ability of tumor lesion and processing
time. After feasibility validation in this paper, additional
medical images and objectives will be considered as a future

work.
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