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Abstract— In this paper, an advanced obstacle avoidance 
system is developed for an intelligent wheelchair designed to 
support people with mobility impairments who also have visual, 
upper limb, or cognitive impairment. To avoid obstacles, 
immediate environment information is continuously updated 
with range data sampled by an on-board laser range finder 
URG-04LX. Then, the data is transformed to find the relevant 
information to the navigating process before being presented to 
a trained obstacle avoidance neural network which is optimized 
under the supervision of a Bayesian framework to find its 
structure and weight values. The experiment results showed 
that this method allows the wheelchair to avoid collisions while 
simultaneously navigating through an unknown environment in 
real-time. More importantly, this new approach significantly 
enhances the performance of the system to pass narrow 
openings such as door passing.   

I. INTRODUCTION 

Commercial electric – powered wheelchairs traced to the 
1950s have been providing functional mobility for people 
with both lower and upper extremity impairments. These 
include various overlapping motor, perceptual, or cognitive 
impairments such as spinal cord injury, or cerebral palsy. 
With the assistance of the wheelchair, their quality of life is 
significantly improved [1]. Although the benefits of the 
powered wheelchair are well-documented, safety issues and 
difficulties associated with the operation and control of 
power wheelchairs often prevent clinicians and rehabilitation 
professionals from prescribing powered mobility [2]. An 
intelligent wheelchair has been, therefore, studied to 
accommodate these people. According to the report [3], 61% 
to 91% of all wheelchair users in the US would benefit from 
the assistance of an intelligent wheelchair. 

One of the indispensable functions for an intelligent 
wheelchair system is an automatic obstacle avoidance 
function. This function is necessary to provide safe 
operations for the operator, normally elderly or disabled 
people, in unknown environments, because a human – 
operated wheelchair system is expected to work in various 
places such as house or hospital rooms. For this reason, only 
real-time collision avoidance methods are applicable to this 
application. Besides, considered as an assistive system for 
humans, obstacle avoidance should result in smooth 
trajectories and comfort for the user during daily driving 
manoeuvres.                                                                                                                                                                                                 
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Although a variety of obstacle avoidance methods for 
intelligent wheelchairs have been reported, they can be 
briefly divided into two kinds.  The first paradigm is known 
as route programs using step by step code for instructing the 
wheelchair. Methods that have been refined over the years 
and are still useful and popular such as Potential field [4], 
Vector field histogram [5, 6], or rule-based approaches [7, 8] 
are typically classified as this type. Obviously, these 
approaches are implemented because they are explicit and 
rigorous. But, it is sometimes very hard to describe the 
desired, exact wheelchair’ behavior in some practical 
situations by proper formulas or code statements.  

The other paradigm that replaces explicit programming 
by training the machine to avoid obstacles, as the wheelchair 
moves around in a cluttered environment, has been emerging 
in recent years. Instead of using formulas or code statements, 
the wheelchair first learns how to adapt to certain situations, 
and after learning, the wheelchair then is able to move 
without collisions. Methods [9] are feasible to transfer 
human navigation skills to an intelligent wheelchair, but only 
applied in simulation or static environment. In recent years, 
obstacle avoidance methods based on Bayesian neural 
networks [10, 11] developed for our intelligent wheelchair - 
called SAM (semi-autonomous machine, see Fig.1) - enable 
the wheelchair to have collision – free navigation in real time 
in a dynamic environment. 

Although demonstrated to work well in various dynamic 
environments, the wheelchair with obstacle avoidance neural 
network developed in our previous work [11] sometimes has 
difficulty in passing through the doorways of the width 
which is less than 1m. In order to overcome the difficulty, in 
this paper, rather than using raw data [11], the data is 
transformed by considering how surrounding obstacles effect 
the navigating process to extract relevant information before 
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presented to the network. Experiment results show that the 
new proposed method increases the generalization and 
efficiency of the trained network which helps the wheelchair 
not only effectively avoid obstacles while navigating to the 
local target, but also considerably enhance the door passing 
performance of the system. This paper is organized as 
follows.  In Section II, the method will be presented. In 
section III, experimental results of the proposed method are 
described to demonstrate the performance of the assistive 
navigation system. Finally, a conclusion of our study is 
drawn in Section IV.    

II. METHOD 

A. System 

Our SAM, as shown Fig.1, based on a commercial 
wheelchair which has been modified to attach main 
additional items: a minicomputer, user interfaces, and 
measurement sensors. This modification allows the user to 
operate in both manual mode and assistive mode. In the 
manual mode, SAM acts as a normal powered wheelchair in 
which the operator simply uses a joystick to drive the 
wheelchair. In assistive mode operation, the system 
interrupts the connection between the wheelchair joystick 
and wheel motor controllers. By doing so, the on-board 
computer generates control signals sent to the motor 
controllers following calculations of a navigation algorithm 
relying on user intentions and measured surrounding 
obstacles. To control the system, the user can use one of four 
available interface types compatible to SAM: Joystick, head 
movement, Brain computer interface, iPhone4/iPad. SAM 
automatically detects and reads signals whenever they are 
connected to the system. Through these user interface 
signals, the SAM is able to monitor what the user wants it to 
do. Another important information source used to make 
navigation decisions comes from the laser URG-04LX-based 
obstacle detection. The computer triggers the sensor to 
produce measured distance and angle data of surrounding 
obstacles with maximum radius of 4m and angular resolution 
of 1.080. Each scan time, 180 data points corresponding to 
front obstacles are obtained. 

 When assistive mode is active, SAM starts to collect 
data from both the user interface and sensors at 100ms 
sampling rate. Then, SAM combines these data together to 
find the direction of travel where the user intends to go. 
While one of its requirements is to avoid obstacles, and 
provide a smooth trajectory, a trained collision avoidance 
neural network is used to make final decisions about editing 
the direction of travel as well as the speed of the vehicle. The 
following sections provide detail description about this 
network. 

B. Direction of travel 

SAM uses URG-04LX data to an build on-line map and 
determine a number of potential paths for circumnavigation. 
In particular, the wheelchair calculates the size of a path 
opening, if the size is greater than the vehicle’s width size 
plus a safe margin, the path is considered as one of potential 
paths of travel. Next, these potential paths and user’s 
commands are combined to find the most suitable direction 

of travel or a local target by using Bayesian recursive 
technique presented in [12]. This technique solves the 
uncertainty of signals caused by the limitation of devices and 
inconsistent commands given by the impaired user.    

C. Environment analysis 

When the direction of travel is determined, the next task 
is how to get there without collision and provides a smooth 
trajectory. Taking into consideration the wheelchair’s control 
in a relationship of surrounding obstacles and the target T as 
Fig. 2 a) displaying all instantaneously measured obstacle 
distances to the wheelchair in a polar form at a time and 
wheelchair dimensions, then clearly, not all of these 
obstacles play an equally important role in navigating the 
wheelchair. In other words, obstacles in the A and B regions 
have significant effects on both speed and steering direction 
of the wheelchair while others far from the wheelchair play 
none. Thus, it is necessary to select important environment 
features and represent them in appropriate forms facilitating 
the use for the non-collision neural network in the next 
section. This can be obtained through the following four 
steps: 

Step 1: Remove unnecessary environment data points. 
For instance, divide the 180 URG-04LX data points into 36 
sections - 5 points per each section, and the closest obstacle 
point of each section represents that section. By the number 
of tries, 5 - point section is likely to be optimal as, if the 
number of points in each section is chosen to be too large, 
some important points might lose. If the number is too small, 
it results in too many sections. The result of this step is 
displayed in the Fig. 2b). 

Step 2: From chosen data from step 1, take the 
wheelchair’s dimensions into account to find the real 
distance of selected obstacles to the wheelchair shown Fig. 2 
c). 

Step 3: Transform all values from step 3 by this 
normalized formula 
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Fig.2. Steps to transform URG-04LX data 
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Where: Inth and dnth are values of nth section after and 
before transforming. a, b are constants that are determined 
such as Inth changes from 0 to 1 when dnth ranges 4(m) to 
0.1(m).  

Step 4: As effects of obstacles in different positions to 
the target are different, a positive or negative sign is assigned 
for each value of section. For example, those lying on the 
right side of the travel direction tend to push the vehicle 
towards the left, resulting in the steering angle being larger 
than the angle to the target, so that they have positive effects. 
Similarly, the left side obstacles lead the steering angle to be 
smaller than the goal angle, and therefore have negative 
impacts. The results of step 3 and 4 are represented in the 
Fig.2 d).  

D. Neural network training based on Bayesian framework 

For an obstacle avoidance task, a feed forward neural 
network with sigmoid hidden neurons and linear output 
neurons is recruited to learn how to react. 36 transformed 
URG04-LX data points and a direction of travel are 
considered as inputs. Output layer comprises of two outputs 
corresponding to steering angle control and velocity control. 
A number of hidden nodes are determined during the training 
process under Bayesian supervision.  

Bayesian framework has been carried out within the 
Levenberg – Marquardt optimization approach to find the 
most optimal network structure as described in detail in our 
previous work [11]. While training, the number of hidden 
nodes varies, and the assessment process for each network 
structure is taken as follows. At first, the values of the hyper-
parameters and weights’ value of the network are randomly 
initialized, then, the Levenberg - Marquardt optimization 
algorithm updates the weight’s value in order to minimize 
the total error function. Finally, the evidence value of the 
structure is estimated when the optimization algorithm is 
converged. The most suitable network is selected with the 
highest evidence value. 

III. EXPERIMENT RESULTS 

A. Neural network training 

 1. Collecting training data experiments. 

In order to train the network to learn how to react in 
certain situations, acquisition experiments are implemented 
in various indoor environments to gather training patterns. 
While SAM is manually driven to follow a number of pre-
designed paths by a standard joystick, a software records 
measured obstacle distances to the wheelchair and control 
signals at 100ms sampling rate. Each pattern includes 37 
inputs and 2 outputs as described in the above section.  

All acquisition experiments are carried out in the Building 
1 of the University of Technology, Sydney (UTS) because it 
has various environment types such as a narrow space, walls, 
doorways, and moving obstacles. While driving the 
wheelchair, the user is aware that depending on obstacle 
clearance level and types of environment, the wheelchair is 
controlled differently. For example, for the experiments in 

the Foyer of the UTS Building 1 where the obstacles are far, 
the wheelchair would be driven close to the direction of 
travel and at a fast speed - the maximum speed is set at 
0.8m/s in these experiments. In contrast, when moving 
between two closely spaced obstacles such as the posts of a 
doorway, the wheelchair is slowed down, and centered with 
the doorway – the maximum speed for passing door task is 
only set at 0.5 m/s. In this situation, a slight difference 
between a steering angle and the desired direction is usually 
acceptable. For corridors or rooms with long walls 
experiments, the speed of the wheelchair might be up to 0.8 
m/s, however, more importantly, the wheelchair should be 
driven to run parallel to the walls. 

The table 1 details a number of patterns collected from 
the acquisition data experiments.  All patterns are utilized for 
training purposes. 

2. Bayesian neural network training results 

During training, a collection of feed-forward neural 
networks with different hidden nodes set to vary from 1 to 10 
are assessed. For consistency, all steps applied for each 
network structure are repeated 3 times, and the results are 
reported in the Fig.3). The network architecture with 4 
hidden nodes which yields the highest evidence is considered 
as the best one and selected to control the wheelchair.  

B. Performance valuation 

1. Real-time navigation test 

In order to evaluate a performance of the newly designed 
obstacle avoidance network, SAM is asked to perform a blue 
dash trajectory: AB – general avoidance, BC – door passing, 
CD – wall following, DF – moving obstacle avoidance and 
door passing in the laboratory room Fig.4. User commands 
only tell it to go at start, then turn right, forward, turn right 
and stop through the head movement interface control. It is 
noticeable that this environment is unknown to the SAM to 

Environment type        Number of Patterns 
The Foyer of the Building 1 with general 
obstacles such as boxes, chairs, tables, 
and moving people 300 
Corridors with different width sizes 250 
Rooms with long walls 250 
Doors with varied sizes in width 400 
Total 1200 

Tab.1. Patterns collected from the acquisition data experiments 

 
Fig.3. Log evidence estimation result for hidden nodes 
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verify the generalization of the trained neural network. Five 
trials are administered, and the average speed per each 
segment and a number of collisions of each trial are recorded 
in table 2.  

The result indicates that SAM is able to navigate through 
an unknown environment in which both static obstacles and 
dynamic obstacles (person walking) are present. No 
collisions occur during the trials. The wheelchair runs quite 
fast when obstacles are far (AB – 0.8±0.029 m/s) or wall 
following (CD – 0.672±0.022 m/s), while slowing down as 
entering narrow spaces (BC – 0.352±0.031 m/s and DF – 
0.374±0.024 m/s). 

2. Door passing 

Door passing experiment is conducted to test the ability 
of SAM to pass between closely spaced obstacles such as a 
door. In this experiment, a door having a changeable width 
from 0.75m to 1.2m was used. In each trial, the wheelchair 
2m away from the door opening is driven toward the door. 
Ten trials are managed for each door-width setting. The 
percentage of successful passing was record in table 3. 

As shown in table 3, SAM is able to cross doorways of 
width 75 cm with 80%, 80 cm with 90%, 90cm or more with 
100%.  

IV. CONCLUSION 

The result of experiments indicate that a system based on 
a trained Bayesian neural network can provide a good 
navigation and a reliable collision avoidance system for 
wheelchair users who have vision, upper-limb, or cognitive 

disabilities; simply have difficulty mastering safe wheelchair 
driving skills. 

The method proposed in this paper increases the 
generalization and efficiency of the network. In [11], the 
optimal non-collision network structure requires six hidden 
nodes. With the new method, the network only needs four 
hidden nodes to navigate the wheelchair to avoid obstacles. 
That means the computing time during navigating is shorter, 
resulting in the system responding faster. This might explain 
why the results of using both networks are quite similar for 
real-time navigation in the laboratory room where obstacles 
are relatively far or doors are quite wide (approximately 
1.1m). However, the four hidden node network improves 
door passing performance of the wheelchair when SAM is 
able to pass the doorways of width 80 cm with 90% and 
90cm with 100% , while with the six hidden node network, 
SAM is only able to cross those doorways with 50% and 
80% respectively.   
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Average speed
 per AB (m/s)

Average speed
 per BC (m/s)

Average speed
 per CD (m/s)

Average speed
 per DF (m/s)

Number of 
collisions

Trial 1 0.81 0.32 0.64 0.36 0

Trial 2 0.76 0.37 0.7 0.34 0

Trial 3 0.83 0.36 0.67 0.38 0

Trial 4 0.78 0.32 0.68 0.4 0

Trial 5 0.82 0.39 0.67 0.39 0

Average 0.8 0.352 0.672 0.374

Deviation 0.029 0.031 0.022 0.024  
Tab.2. The average speed and number of collision in the five trails 

Door width (cm) Rate of succeful passing (100%)

75 80

80 90

90 100

100 100

110 100

120 100  
Tab.3. Door passing test results 

 
Fig.4.The automated assistive navigation system’s performance 
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