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Abstract Few studies have directly compared real-time control 
performance of pattern recognition to direct control for the 
next generation of myoelectric controlled upper limb 
prostheses. Many different implementations of pattern 
recognition control have been proposed, with minor 
differentiations in the feature sets and classifiers. An objective 
and generalizable evaluation tool quantifying the control 
performance, other than classification accuracy, is needed. This 
paper used the implementation of such a tool through the 
design of a target acquisition test, similar to a Fitts' law test, 
relating movement time of the target acquisition to the 
difficulty of the target, for a given control strategy. 
Performance metrics such as throughput (bits/sec), completion 
rate (%) and path efficiency (%) allow for a complete 
evaluation of the described strategies. We compared direct 
control and pattern recognition control with the proposed test 
and found that 1) the test was valid for control system 
evaluation by following Fitts' law with high coefficients of 
determination for both types of control and 2) that pattern 
recognition significantly outperformed direct control in 
throughput with similar completion rates and path efficiencies. 
In this framework, the present pilot study supports pattern 
recognition as a promising strategy and forms a basis for the 
development of a general and objective tool for the 
performance evaluation of upper limb control strategies. 

I. INTRODUCTION 

Ideally, powered upper-limb prostheses should be controlled 
with a reliable and robust control strategy that can be 
intuitively operated by end-users. Measuring the 
intuitiveness and robustness of such control systems is very 
challenging. To date, there is no simple, objective tool for 
the evaluation and comparison of upper limb prosthetics 
control strategies during real-time control operation. 

Myoelectric control systems for upper limb prostheses 
can be based on the conventional direct control (DC) or on 
pattern recognition control (PR). DC often uses a residual 
pair of agonist-antagonist muscles in the remnant limb and 
maps their isolated contractions to one degree of freedom 
(DOF) of the motorized prosthesis. An increased number of 
operable DOFs is enabled by implementing a mode switch 
event that allows changing between DOFs [l]. PR control 
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maps patterns of muscle activation rather than an isolated 
contraction of a specific muscle to one DOF of a prosthesis. 
It relies on the assumption that a set of features describing the 
myoelectric signal at an electrode location is repeatable for 
the same state of muscle activation but distinguishable from 
other states [2]. This technique is intuitive and allows the 
operation of multiple DOFs independently. While it does 
have some limitations such as imposing the sequential 
operation of each DOF, it has been identified as a good 
option for controlling the next generation of multifunctional 
prostheses [3-6]. 

A standard performance evaluation metric of PR control 
strategies is the analysis of offline classification accuracies 
(or errors). This metric has been shown to correlate with 
real-time control performance [7, 8] but there are many other 
factors that influence functional outcomes. Few objective 
functional tests to assess the usability (not just the control 
strategy) of powered prostheses exist and require the use of a 
physical prosthesis [9], which is not always possible in 
fundamental research. As such, virtual environments have 
been proposed as a low-cost alternative to measure real-time 
control performance. In this framework, Simon et al. 
developed a target achievement control test (TAC test) to 
test PR real-time performance in a virtual environment [10]. 
The TAC test evaluates the controllability of a prosthesis 
through the positioning of a multi-functional virtual limb 
from an initial target position back to a neutral position. The 
test allows inferring user performance with metrics such as 
path efficiency, completion rate and completion time in one 
given difficulty that is manually adjustable by defining 
tolerance in the end-position, time-out or number of motions 
required. While the TAC test can only evaluate one 
difficulty level at the time, it is further limited by the 
visualization of the task in the virtual environment, 
especially when several motions need to be performed to 
achieve the target posture. 

T TAC test has a close analogy to a so-called Fitts' law 
test. In 1954, Fitts first evaluated human motor performance 
in a one-dimensional target acquisition test, relating the time 
of the pointing movement to the difficulty of the target [ 11]. 
The outcome described the performance of the human motor 
system in terms of speed and accuracy of the inferred 
pointing movements in one single metric called throughput 
(TP), in bits per second. Fitts postulated that the TP reflected 
on the capabilites of the control system to transfer 
information. Since then, Fitts' law has been widely used in 
the validaton of human-computer interfaces (HCis) and has 
been integrated into a standard for the evaluation of pointing 
devices [12]. 

In 2008, Williams and Kirsch compared three different 
cursor control systems, one of them with surface 
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electromyography (EMG) signals from neck muscles, in a 
two-GLPHQVLRQDO� )LWWV¶� ODZ test [13]. They used a set of 
complementary performance metrics similar to those in the 
TAC test. In 2012, Engelhart and Scheme compared surface 
EMG classification schemes for three-DOF PR control 
strategies in a pseudo-three GLPHQVLRQDO�)LWWV¶�ODZ�WHVW [14]. 

The aim of the present pilot study was the evaluation and 
comparison of DC and PR control strategies for upper-limb 
prosthetics in a two dimensional center-out target 
DFKLHYHPHQW�WHVW�LQ�DQDORJ\�WR�D�)LWWV¶�ODZ�VW\OH�WHVW. The test 
was designed to compare the control strategies in a 
repeatable and general setting in real time. Reported 
performance evaluation included the fitting of the obtained 
GDWD�WR�)LWWV¶�ODZ��WKH�73�RI�WKH�WZR�VWUDWHJLHV�DV�ZHOO�DV�SDWK�

efficiency (PE), completion rate (CR) and the typical 
signature of each control strategy. This preliminary study 
served as basis for a complete study in which three control 
strategies (DC, sequential PR and simultaneous PR control) 
are evaluated on able-bodied and amputee subjects in a two 
GLPHQVLRQDO�)LWWV¶�ODZ�VW\OH�WHVW� 

II.   METHODOLOGY 

Subjects. Five able-bodied right-handed students were 
recruited, gave informed consent and participated in the 
institutional review board approved study.  

EMG-based control strategies. The source signal for each 
of the three control strategies was surface EMG. For DC, a 
pair of bipolar electrodes was placed on the wrist flexor-
extensor muscle pair on the proximal forearm. For PR 
control, four bipolar electrodes were positioned at equal 
distances around the circumference of the proximal forearm. 
The recorded EMG signals were amplified using a Texas 
Instruments TI-ADS1299 analog front end system and 
sampled at a frequency of 1 kHz. The signal was filtered 
with a 3rd order Butterworth filter at a 20 Hz cut-off 
frequency to reduce motion artifact. For direct control, the 
mean absolute value (MAV) extracted over a 150 ms sliding 
window of the EMG signal of the electrode pair was directly 
mapped to one operational DOF. A second DOF could be 
selected by a short co-contraction of flexors and extensors. 
The DC thresholds were manually set so that the user could 
easily operate either DOF without accidentally switching 
into the other one.  For PR control, a set of autoregressive 
and time-domain features commonly reported was used to 
represent the EMG data from each channel using 150 ms 
windows and a linear discriminant analysis (LDA) classifier 
was used to discriminate between movement classes [4]. 
Post processing of the data was achieved using the decision-
based velocity ramp described by Simon et al [15]. 

Test set-up. The test was implemented in a MATLAB 
(Mathworks Inc., Natick, MA) graphical user interface 
(GUI)  and consisted in a two-dimensional Cartesian space 
of size (-100,100) x (-100,100) distance units with the origin 
at the center (0,0) of the GUI. A trial required moving the 
cursor rapidly from the origin into a target circle with the 
control schematic in table 1. The width of the target and 
position with respect to the origin were programmable by the 
experimenter or could be randomized for a range of 
difficulties (see equation 2).  

TABLE I: CURSOR CONTROL MAP 

Simple motions for sequential control 

Hand open Æ (+) x-axis control 
Hand close Æ (-) x-axis control 

Wrist extension Æ (+) y-axis control 
Wrist flexion Æ (-) y-axis control 

 
A trial was successful when the cursor was moved into the 

target circle and dwelled inside for two seconds; this time 
was subtracted from the movement time in the subsequent 
analysis. Trial failure occurred either through time-out (if 
acquisition time exceeded 15 sec) or through difficulty, 
when the cursor overshot the target more than 5 times in an 
attempt to stop inside and dwell. Visual feedback guided the 
subject in the target acquisition: the target circle turned 
green whenever the cursor was inside and was red if not. 
The cursor was reset to the origin after each trial.  

Performance evaluation. Subject performance and the 
validity of the test were HYDOXDWHG� WKURXJK� WKH� ILW� WR� )LWWV¶�
law, predicting a linear relationship between the movement 
time (MT) of the target acquisition and the index of 
difficulty (ID) of the target. )LWWV¶� ODZ�predicts the linearity 
between MT and ID according to 
 
 MT = a + b × ID,  (1) 

where a and b are the parameters of the law and ID is the 
index of difficulty of the targets in bits, defined by 
MacKenzie et al [16] as follows:  
 
 ID = log2( 

D/W + 1 ),  (2) 

with D the distance from the origin to the center of the target 
and W the width of the target. Further, the control systems 
were evaluated by their throughput TP in bits/sec, calculated 
by the mean of means method suggested in ISO 9241-9 [12]: 
 

 TP = 1/y �( 1/x �( ID/MT ) ),  (3) 

with y the number of subjects and x the number of different 
ID conditions. Additional metrics for the control strategy 
evaluation included path efficiency (PE) and completion rate 
(CR). Because both control types were sequential, PE was 
calculated as the ratio of the cursor trajectory to the city-
block distance between target and origin. CR was computed 
as the percentage of successful trials over the total trials.  

 Protocol. )LWWV¶� ODZ� DQDO\VLV� ZDV� SHUIRUPHG� RQ� ILIW\�
different targets per session. The target width and distance 
from the origin varied so that fifty different ID values 
ranging from 0.77 to 5.53 were obtained. Additionally, one-
DOF targets were defined as targets on horizontal or vertical 
axis and two-DOF targets, as targets that were off-axes. 
Subjects completed a training session in order to familiarize 
with both the test set-up and the control system. The 
protocol for one control strategy consisted in four sessions of 
fifty trials each. 

Statistical analysis.  A 2-way analysis of variance was 
performed with subject as a random factor and target type, 
control strategy and session as fixed factors to assess the 
statistical difference between control modes and target types 
for the performance metrics TP, PE and CR. The difference 
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between DC and PR for correlation and regress10n 
coefficients of Fitts' law (offset and slope) was assessed 
with a paired t-test for each target type. 

III. RESULTS 

The obtained regression lines show a strong linear 
relationship between MT and ID for each control strategy 
and for both one-DOF and two-DOF targets with high 
correlation coefficients R2 (Figure 1 ). 

The parameters of the linear regression, averaged across 
subjects, are presented in table 2, part b. The slope 
(parameter b) of the linear regression was similar for both 
strategies within each target type, but significantly increased 
from one-DOF targets to two-DOF targets. The offset 
(parameter a) was significantly higher for DC when 
compared to PR for both target types and there was also a 
substantial increase in offset from one-DOF to two-DOF 
targets within each control strategy. 

PR control performed with significantly better TP than 
DC but there was no difference between control strategies 
for either PE or CR (Table 2, part a.). In terms of target 
types, there was no significant difference in PE, but both TP 
and CR had significantly higher scores in one-DOF targets. 

Figure 2 shows the cursor trajectories for both control 
strategies and both target types for the entire dataset. The 
grid intersection of the two-DOF targets corresponded to the 
two-DOF target locations, whereas one-DOF targets were 
located on the axes. The signature of both control strategies 
is due to the sequential operation mode of both control types. 

IV. DISCUSSION 

The proposed Fitts' law style test was designed in an 
attempt to provide an objective framework for the 
comparison of two upper limb prosthetics control strategies. 
The test was simple in its two-dimensional target acquisition 
design, informative through the testing of several difficulty 
levels and overcame limitations associated with visualization 
from more immersive testing, such as the TAC test. 
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Figure 1: Regression equations and coefficients for Fitts' law, 

averaged across subjects. 

Table II: RESULTS FOR PR AND DC IN THE EVALUATED 
PERFORMANCE METRICS. MEAN± STANDARD ERROR 

a. Performance 
Throughput Path efficiency Completion 

metrics 
(fzeneral linear models) 

(bits/sec) (%) rate(%) 

One-DOF targets 

Direct Control 0.811±0.02 86.58 ± 1.38 98.17 ± 1.01 
Pattern Recognition 1.008 ± 0.03 88.21±1.26 97.88 ± 1.7 

Two-DOF targets 

Direct Control 0.447 ± 0.01 87.27 ± 0.60 91.83 ± 2.05 
Pattern Recognition 0.572 ± 0.01 83.67 ± 0.74 94.08 ± 1.06 

p-values 

Control strategy p ~ 0.021 p ~ 0.729 p ~ 0.746 
Target type(# DOFs) p < 0.001 p ~ 0.239 p ~ 0.032 

b. Linear 
regression R2 Offset Slope 

parameters (parameter a) (parameter b) 
(paired I-test) 

One-DOF targets 

Direct Control 0.958 1.2222 } * 0.9163 
Pattern Recognition 0.894 0.5351 0.9291 

Two-DOF targets 

Direct Control 0.967 2.2043 } 1.5610 
Pattern Recognition 0.965 1.0480 ** 1.5447 

* p ~ 0.056, ** p ~ 0.022 
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Figure 2: Cursor control signatures for 1and2 DOF targets. 

In this context, we have compared DC and PR and found 
that PR provides substantial advantages over DC. These 
findings support previous work by Hargrove et al [ 1 7] which 
found that PR outperformed DC in a 3-DOF virtual 
clothespin placement task. The appropriateness of our test 
has been established through high correlation coefficients R2 

for each of the four cases (Figure 1 and Table 2). Our results 
support the growing use of such a test which has been 
performed previously by other researchers [13, 14]. 

We noticed that DC yielded a significantly higher offset 
for both 1 and 2 DOF tasks compared to PR (Table 2). This 
was most likely caused by the time required for the co-
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contraction switch. Even though the implemented PR control 
could not perform simultaneous movements, subjects could 
seamlessly transition between DOFs which saved a 
substantial amount of time. This significant difference was 
translated in the metric TP, presenting with significantly 
higher scores for PR than for DC, even though the slopes of 
the regression equations, defined as the ratio of MT to ID 
were not statistically different between control strategies for 
target types. As such, both control strategies may convey 
instantly the same amount of information and are in that 
sense equally good. However, the amount of time required to 
mode-switch between DOFs for DC lowers its average TP 
and is coupled to higher fatigue as reported by subjects, 
consisting in a major limitation when compared to PR.   

Both R2 and the values we obtained for TP with PR in 
one-DOF targets (Table 2) compare favorably to those 
previously reported by Scheme et al. in a similar three-DOF 
)LWWV¶� ODZ� VW\OH� WHVW� XVHG� WR� FRPSDUH� WZR� 35� FRQWUROV�

(TPLDA=1.1±0.03 and TP1vs1=1.07±0.02) [14]. The targets in 
their test had one complexity level and could be achieved by 
one DOF, depending on location or size. As such, they apply 
to being compared to the one-DOF targets of this experiment 
only. Nevertheless, the differences in the number of DOFs 
controlled, the variable maximum cursor speed between the 
studies, and the differences in IDs tested prevent a direct 
comparison of TPs from being made. 

The two control strategies had satisfying CR, both with 
significantly higher CR for one-DOF targets. It was noticed 
that the most difficult targets were two-DOF targets with the 
smallest width. These targets required subjects to be very 
precise in two DOFs which made it more difficult than for 
one-DOF targets.  

The cursor trajectories had a regular grid appearance (Fig. 
2) due to the sequential nature of both controls. For DC, the 
DOF under control at the start of one trial was left as the last 
DOF controlled during the previous trial. This required 
subjects to sometimes switch DOFs at the beginning of a 
new trial depending on the location of the subsequent target. 
As a seamlessly sequential control strategy, this was not 
necessary for PR. 

A limitation of the present work can be seen in the fact 
that the test was only performed on able-bodied subjects. 
Furthermore, some additional performance metrics could be 
useful to draw a complete picture for a control, such as 
overshooting or stopping capabilities. 

V. CONCLUSION 

The present work has proven to be a valid test for the 
evaluation and comparison of upper limb prosthetics control 
strategies. The proposed framework evaluated the DC and 
PR as strategies with their throughput and demonstrated a 
significant advantage of PR over DC in both one- and two-
DOF tasks. It further provides evidence for its advantage 
over DC in one- and two-DOF tasks through a seamless 
sequential operation mode. This results in a faster and less 
fatiguing control strategy that conveys more information. 
The development of a simultaneous PR control would 
further enhance the described benefits of the strategy and 

could be evaluated in the proposed test, supporting this 
framework as a general and objective evaluation tool. 
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