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Abstract— Long-term functioning of a hand prosthesis is
crucial for its acceptance by patients with upper limb deficit. In
this study the reliability over days of the performance of pattern
classification approaches based on surface electromyography
(sEMG) signal for the control of upper limb prostheses was
investigated. Recordings of sEMG from the forearm muscles
were obtained across five consecutive days from five healthy
subjects. It was demonstrated that the classification perfor-
mance decreased monotonically on average by 4.1% per day. It
was also found that the accumulated error was confined to three
of the eight movement classes investigated. This contribution
gives insight on the long term behavior of pattern classification,
which is crucial for commercial viability.

I. INTRODUCTION

Pattern recognition of surface electromyographic (sEMG)
signals is a promising approach for facilitating intuitive use
of multifunctional upper limb prostheses. However, despite
the research efforts of several groups (e.g., [1]-[4]), no
commercial product is available to date. One reason for this
failure is the lack of robustness of the proposed methods
in real-life settings. Unintended prosthesis movements are
indeed rated as highly frustrating [5] and the reliability of
a prosthesis is a crucial factor for prosthesis acceptance
[6]. Therefore, studies have been conducted to investigate
the deteriorating effects of electrode shift with respect to
the muscles [7], [8], varying arm postures [9], [10], and
the changes in muscle activities due to fatigue [11], [12].
The reliability of classification across different days of use
has also been addressed by [13], although for only one
subject. Additionally a system that allows for retraining of
the prosthesis whenever the user feels the necessity for it has
been recently proposed [14], but a general understanding of
the long-term dependence on classification accuracy is still
needed. Therefore, in this study we aimed at quantifying
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changes in EMG classification accuracy as a function of time
in the range of five days.

II. MATERIALS AND METHODS

A. Subjects

Five (two experienced and three naive) healthy subjects
(age 25.8±0.8 years, 3 males and 2 females), were recruited
to participate. The naive subjects were introduced to the
topic and the systems used in a 15-min introduction and
test session before the beginning of the main experiment.
The study was approved by the local ethics committee
and the subjects signed an informed consent prior to their
participation.

B. Data collection

The data were collected using eight dry bipolar electrodes
(Otto Bock HealthCare Products GmbH, Vienna, Austria,
13E200=50AC). The skin area was treated with abrasive gel,
cleaned with alcohol and with a small amount of conductive
gel to minimize the electrode-skin impedance. The elec-
trodes were placed equidistantly around the circumference
of the right forearm (all subjects were right-handed), 6.5-
7.5 cm (depending on the subject’s arm length) distal to
the olecranon, using a custom-made mounting device. The
exact locations of the electrodes were marked using a skin
friendly, sweat and water resistant pen and renewed every
day for accurate repositioning of the electrodes. The raw
signals were amplified to a range of 0-4.5 V in the bandwidth
20-450 Hz with the inclusion of a 50 Hz notch filter.
The processed signals were then sampled at 1kHz with a
10bit A/D converter and transferred to a personal computer
via Bluetooth by the Axonmaster (Otto Bock HealthCare
Products GmbH, Vienna, Austria), where they were recorded
using a custom application.

C. Experimental protocol

The subjects were seated in front of a computer monitor.
The maximum long term voluntary contraction (MLVC),
defined as the maximum contraction that the subject was able
to hold over a period of approximately 20s, was determined
for each subject and movement. During data recording,
trapezoidal profiles (trise=1s, tplateau=3s, tfall=1s) were
displayed at three force levels: 30%MLVC, 60%MLVC and
90%MLVC. The sum of root mean square (RMS) values
of the eight sEMG signals was calculated and displayed to
the subjects as biofeedback and they were asked to trace
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the given profiles to the best of their abilities by activat-
ing their forearm muscles corresponding to movements of
the following eight classes: wrist supination (WS), wrist
pronation (WP), wrist flexion (WF), wrist extension (WE),
hand opening (HO), key grip (KG), fine pinch (FP), and no
movement (NM). The classes were indicated to the subjects
using images with text captions and audio advice. For this
study, only the static parts of the signals (tplateau) were used.
The mean tracking error was calculated as the average of the
mean square errors (MSE) between the given profile trape-
zoids and the actual contractions. Every movement/force
combination was repeated 15 times, resulting in a total of
1080s (8 classes x 3 force levels x 15 repetitions x 3 s) of
data per subject per day. These sessions were repeated on
five consecutive days.

D. Signal Processing

For classification, four widely used time domain features
were used [2], [3], [12], [14], calculated in intervals of 128
ms and a frame increment of 50 ms: RMS, zero crossings
(ZC), slope sign changes (SSC) and waveform length (WL).
Classification was performed offline by applying linear dis-
criminant analysis (LDA). Assuming multivariate Gaussian
feature distribution and homoscedastic covariances for each
class, LDA constitutes the optimal Bayesian classifier [15].
After this rule, decide among C target labels for class i s.t.
the conditional probability P (·|·) for x is maximized:

P (x|i) · P (i)∑
P (x)

>
P (x|j) · P (j)∑

P (x)
, ∀i ̸= j ∈ {1, . . . , C}
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Assuming Gaussian distribution for the probability density
function P (x|k)
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Further assuming homoscedastic covariances (Σi=Σj=Σ), (3)
can further be simplified to the decision function f(x, i)

f(x, i) = logP (i)− 1
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and decide for class i s.t. f(x, i) > f(x, j) ∀i ̸= j ∈
C. Cgi and Wgi can be calculated during the training
phase of the classifier for each class and combined, so that
classification of an unknown vector x can be achieved in only
one matrix multiplication and is therefore a very efficient
method. The classification accuracy (ratio between correct
classifications and total classifications) was calculated within

and between days. For the within days analysis, a five-
fold cross-validation scheme was applied and the average
classification accuracies were used. For the between days
evaluations, the entire data set of one day was used for the
classifier training and the entire data set of another day was
tested. Every possible combination of train- and test days
was employed. All results are presented as mean ± standard
deviation.

III. RESULTS
The classification accuracy within days per subject was on

average 97.9%±0.8. The results for a representative subject
are shown in Fig. 1, indicating the highest classification
accuracies within days and a decrease in accuracy when
the test data and the training data were not obtained in the
same day. It was further investigated whether a training effect
occurred within five subsequent days of data recordings in
tracking the given force profiles. As shown in Fig. 2, this
effect was globally not observed. Moreover, there was no
difference in this performance between experienced subjects
(Subjects 1 and 5) and naive subjects.

Fig. 1. Classification accuracies for a representative subject are high
when classifier training - and test data are obtained from the same day
(98.42%±0.4 for this subject) and tend to drop monotonically with increas-
ing separation between training and test day. This trend is observable for
all days, except day 5, on which a re-ascent was found in four of the five
subjects.

In Fig. 3 the average classification accuracies are dis-
played, indicating that the accuracy tended to decrease from
the maxima of within day accuracies monotonically as a
function of the number of days separating the training and
test set. On average, the classification accuracy dropped by
4.17% per day between training- and test days. Interestingly,
in four of the five subjects the classification accuracies
of the fifth day were consistently higher than the average
for other between day assessments. This can be observed
representatively in Fig. 1 for one subject and is also clear
in Fig. 3, where an average increase in accuracy can be
observed for the last day for all training days. In fact, in
Fig. 3 it can be observed that when classifying data that
were recorded before the data used for the classifier training,
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Fig. 2. Evolution of tracking errors per subject. No significant increase or
decrease in the subjects’ abilities of following the demanded force profiles
could be observed within five subsequent days of data recording.

Fig. 3. Trends of classification accuracies, averaged over subjects (n=5).
The classification accuracy decreases when the interval between train and
test day increases. Error bars indicate one standard deviation and are drawn
only in one direction for clarity.

there is a monotonic decrease in classification accuracy.
In order to investigate the origin of classification errors, a
histogram of the misclassifications averaged over all days
and subjects was created from the respective test confusion
matrices. Significant rates of misclassifications were defined
as 5%. In Fig. 4 these classification error ratios (10 out of
64 were found to be significant) are plotted in descending
order together with their corresponding standard deviations.
It was found that confusions between classes HO and FP
contributed the two largest portions of classification errors.
As the standard deviations of these particular pairs of classes
were relatively high, this type of error did not occur con-
sistently across days and subjects. Class HO was present
in three of the four highest classification errors, indicating

that this movement is more difficult to classify consistently
over days. Misclassifications of class WF had comparatively
lower standard deviations, suggesting that the difficulty of
classifying this movement was consistent for all subjects
and days. Class WS was present in six of the lower seven
significant misclassification ranks, also with low standard
deviations, again demonstrating that classification of this
movement was difficult consistently across subjects and days.
In fact, 76.5% of all misclassifications involved classes WS,
HO, or FP.

Fig. 4. Histogram of the largest classification errors, ranked in descending
order, 1 standard deviation. The labels next to the bars indicate the actual
and the calculated classes (e.g. FP=>HO means data from class FP were
wrongly labeled as data from class HO).

IV. DISCUSSION

In the present study the relation between time and EMG
classification accuracy was investigated. The results demon-
strated that classification accuracy decreases as a function of
time. In [7], [17] it was shown that classification accuracy
determines the controllability of a prosthesis.Therefore, a
functional online test would likely also reveal the same
decreasing trend of task completions. Hence, the dependence
on time of the classification accuracy is very important for
the long term usability of a prosthesis. However, the reason
of the gradual increase in classification error is not yet
known. Not surprisingly, we demonstrate that the highest
classification accuracy is achieved when training- and test
data stem from the same day and session, using 5-fold cross
validation. But in subsequent days, one may rather have
expected random variations due to placement errors of the
electrodes, stochastic changes in electrode-skin impedance
from day to day and performance/concentration of the subject
in performing the requested movements. Electrode placement
was controlled very carefully with the skin markings. Yet
it is possible that the relative position of the skin and the
underlying muscles was slightly different each day due to
compression exerted to keep the electrodes in place. In
order to minimize variations in the electrode skin impedance,
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the skin was treated prior to recordings each day in the
same manner, as described in Section II B. All of these
uncertainties are of stochastic nature, therefore other, time
dependent factors are likely involved and responsible for
the monotonic decrease of classification accuracy. This may
involve the motivation of the subjects. As presented, classi-
fication accuracy tended to be higher than average on the
last day, which may support this assumption (motivation
of last day in study). Another possible reason is that the
repeatability of each movement improves over time, as de-
scribed in [6], which compared class separabilities between
novice and experienced subjects in a very similar setup as
used in this study over the course of two days. An indicator
for this may be the fact that when classifying data back in
time a monotonic decrease in classification accuracy can be
observed in Fig. 3, however especially data from the last
day seem to be very well classified. A possible explanation
would be that after a certain amount of training, subjects
were able to perform the requested movements in a more
repeatable manner. Therefore, the feature clouds for each
movement would become more concise across days. As a
consequence, such data can be very well classified but on
the other hand do not yield a generalizing classifier. Another
possible reason for this saturation is that after five days
the increase in classification error converges. Moreover no
correlation between the error in tracking the force profiles
and classification accuracy was observed. Therefore, the indi-
vidual correlations of tracking performance and classification
accuracies for all movements have to be analyzed in detail
and their contribution to the overall classification accuracy,
which is out of the scope of this study. The average within
days accuracy was 97.9% and decreased on average 4.2% per
day during the investigated period of five days. It was also
shown that misclassifications of three classes (WS, HO, FP)
accounted for 76.5% of the total averaged misclassifications.
These results indicate that with the signal processing methods
and classification approach applied in this study, a decrease
of functionality has to be expected within the range of a
few days and that certain sub groups of classes require more
attention than other movements. Possibly including data from
several days into the classifier training might help to improve
the stability of prosthesis control, but this has not been
investigated in this study.
Finally, it is worth noting that the current study is limited
in the number of subjects and days investigated and in
the constraint of analysis of able-bodied subjects only. Five
days can be considered long term when compared to most
other studies, dealing with intra-session analysis, but is still
relatively short compared to a real prosthesis usage of several
years. The trends found in this study should be confirmed
with a significantly longer period of investigation. The pre-
sented results must be considered in the context of these
limitations. A greater subject group, including subjects with
amputations, should also be employed for further extending
our conclusions.
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