
  

 

Abstract— Electromyogram (EMG) recorded from residual 

muscles of limbs is considered as suitable control information for 

motorized prostheses. However, in case of high-level 

amputations, the residual muscles are usually limited, which 

may not provide enough EMG for flexible control of myoelectric 

prostheses with multiple degrees of freedom of movements. Here, 

we proposed a control strategy, where the speech signals were 

used as additional information and combined with the EMG 

signals to realize more flexible control of multifunctional 

prostheses. By replacing the traditional “sequential 

mode-switching (joint-switching)”, the speech signals were used 

to select a mode (joint) of the prosthetic arm, and then the EMG 

signals were applied to determine a motion class involved in the 

selected joint and to execute the motion. Preliminary results 

from three able-bodied subjects and one transhumeral amputee 

demonstrated the proposed strategy could achieve a high 

mode-selection rate and enhance the operation efficiency, 

suggesting the strategy may improve the control performance of 

commercial myoelectric prostheses. 

 

I. INTRODUCTION 

Multifunctional prostheses are very useful aids for limb 
amputees, and a proper control strategy is the decisive factor 
for their acceptability and practicality. Electromyographic 
(EMG) signals have been suggested for prosthesis control 
[1–8], and many myoelectric prostheses have been already 
available on the market. Traditionally, EMG signals from a 
pair of residual muscles (agonistic and antagonistic muscle) 
are used to control one degree of freedom (DOF) of 
movements. However, the EMG signal source is usually 
limited, especially for the high-level limb amputees, where 
few residual muscles are retained but more EMG sources are 
required for the recovery of their lost limb functions [9–10]. 
Conventionally, in order to control multiple DOFs with one 
pair of residual muscles, a so-called “sequential 
mode-switching (joint-switching)” is utilized, where the 
switching between different joints of a multifunctional 
prosthesis is realized by either a simultaneous co-contraction 
of a muscle pair or an external switch pad. In this way, in order 
to execute a motion, the corresponding mode should be 
switched to in advance. As an example, in a 3-DOF-prosthesis 
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with three joints of “hand”, “wrist”, and “elbow” for 
transhumeral amputees, the switching sequence is 
“hand-wrist-elbow-hand-…” and is performed with the 
co-contraction of a muscle pair, such as residual biceps and 
triceps. If the present mode is “hand” and the user wants to do 
an elbow motion, he/she has to co-contract the muscle pair to 
switch the mode from “hand” to “wrist”, then co-contract 
again to switch from “wrist” to “elbow”, and contracts either 
biceps or triceps to actuate an elbow motion such as flexion or 
extension. Therefore, switching to different modes is slow and 
makes the prosthesis control cumbersome. As a result, less 
than half of the myoelectric-prosthesis owners often use their 
prostheses due to the long training period, awkward motion, 
and heavy body burden [11].  

A control approach based on pattern recognition of EMG 
signals may yield a significant improvement over the 
conventional myoelectric control strategy. The previous 
studies have shown that this approach has the potential to 
allow users to naturally operate their myoelectric prostheses 
with multiple DOFs [1–3, 12–13]. However, it is also limited 
with the lack of enough EMG sources after amputations. In 
order to rebuild the lost information sources, a promising 
nerve-machine interface called Targeted Muscle 
Reinnervation (TMR) has been proposed and developed 
recently [13–16], where the residual body nerves are 
connected to some specific target muscles through surgeries. 
But the inconvenience of the second surgery and relatively 
high cost may prevent the further application of the TMR 
method. 

To overcome the difficulty of the awkward mode 
switching in current commercial myoelectric prostheses, a 
more convenient and easy-to-realize way is required, which 
may need some additional control signals. One of the 
available candidates may be the human speech that has been 
widely utilized as a kind of simple control signal. The speech 
signals can be non-invasively acquired and the present speech 
recognition technique is quite developed [17]. In this paper, 
we proposed a new control strategy, in which the speech 
signals would be used as additional information and combined 
with the EMG signals to realize more flexible control of 
multifunctional prostheses with multiple DOFs. By replacing 
the traditional “sequential mode-switching”, the speech 
signals would be used to select a mode of the prosthetic arm, 
and then the EMG signals would be applied to determine a 
motion class involved in the selected mode and to execute the 
motion. The feasibility and performance of the proposed 
method would be investigated in the study. 
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II. METHODS 

A.  Control Strategy 

A 3-DOF-prosthesis (Shanghai Kesheng MH32, China) 
was used. It had three modes of “hand”, “wrist”, and “elbow”, 
and each mode had two motion classes as 
“hand-closing/opening”, “wrist-pronation/supination”, and 
“elbow-flexion/extension”. A control strategy based on the 
combination of speech and EMG was proposed: The speech 
signals were used to select a mode (i.e. hand, wrist, or elbow), 
and then the EMG signals from a pair of muscles were used to 
determine a motion class involved in the selected mode (i.e. 
closing or opening for hand; pronation or supination for wrist; 
flexion or extension for elbow) and execute the motion, as 
shown in Fig. 1. Here, a pair of muscles (bicep and tricep in 
this work) with an EMG-electrode on each was used as the 
EMG source, and each muscle was corresponding to a motion 
class in a selected mode (i.e. bicep for hand-closing and tricep 
for hand-opening in the hand mode; bicep for wrist-pronation 
and tricep for wrist-supination in the wrist mode; bicep for 
elbow-flexion and tricep for elbow-extension in the elbow 
mode). 

B.  Subjects 

In the pilot study, four subjects with full language 
competence were recruited, including three able-bodied 
subjects (two male and one female, marked as A1, A2, and A3) 
and one transhumeral amputee (male, marked as B), as 
summarized in Table I. EMG signals were recorded from the 
full bicep and tricep of the able-bodied subjects and from the 
residual bicep and tricep of the transhumeral amputee, as 
shown in Fig. 2. The protocol of this study was approved by 
the Institutional Review Board of the Shenzhen Institutes of 
Advanced Technology, China. All subjects gave the written 
informed consent and provided the permission for publication 
of photographs with a scientific and educational purpose. 
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Figure 1.  Control strategy for multifunctional prostheses based on the 

combination of speech and EMG signals, where speech was used for mode 

selection and EMG was used for motion class determination and motion 

execution. 

TABLE I.  DEMOGRAPHIC INFORMATION OF SUBJECTS 

Subject Gender/Age Body situation Test side 

A1 Male/30 Able-bodied Left 

A2 Male/24 Able-bodied Right 

A3 Female/28 Able-bodied Right 

B Male/33 Amputated, Right Right 

 

     

Figure 2.  Body situation and EMG recording position for an able-bodied 

subject (left) and the transhumeral amputee (right). 

C.  Data Acquisition 

For mode selection, simple keywords representing 
different modes should be recognized. An individual speech 
template was created for each user instead of a preset standard 
speech bank, and therefore the system could be applied to any 
users no matter which language, dialect, or accent he/she used. 
In practice, any words can be used as the control orders 
depending on the users’ preference. In this study, the words 
“hand”, “wrist”, “elbow” in mandarin Chinese were specified 
for three joint modes. Speech signals were collected in office 
environment (background noise of around 55 dB) with a 
commercial omnidirectional electret condenser microphone 
(sensitivity of –44±3 dB), and processed through 
amplification, second-order butterworth band-pass filter 
(passing band of 370 Hz to 3.4 kHz), and acquired with a 
self-designed acquisition system (sampling rate of 8000 Hz, 
every 1000 samples were considered as a sample frame). A 
template was created by pronouncing each keyword five times 
for each subject. For the recognition of keywords, the dynamic 
time warping (DTW) algorithm [18] was applied. The 
mel-frequency cepstrum coefficients (MFCC) based on 
auditory model was used to extract speech characteristic 
parameters for a good recognition precision in case channel 
noise and spectrum distortion existed. In order to reflect the 
dynamic behavior of speech signals, the MFCC, its first-order 
difference, and its second-order difference were combined 
into one vector as the characteristic parameter for the speech 
signal. The recognition was triggered by signal amplitude, and 
only the signals that were greater than a given threshold would 
be compared with the template with the DTW algorithm, and 
the most matching one was considered as the recognition 
result. Thereafter, the required mode was selected by the 
system according to the recognized speech signals. 

A commercial EMG collection system (Delsys Trigno 
Wireless, USA) was applied for the EMG recording from a 
pair of muscles. The amplitude modulation method based on 
fixed dual-thresholds was used for EMG signal decoding and 
control. EMG signals from each muscle were recorded 
(sampling rate of 8000 Hz, every 1000 samples were 
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considered as a sample frame) through the corresponding 
bipolar electrode and transmitted wirelessly to the processing 
terminal. When the amplitudes of EMG recordings were 
greater than a magnitude threshold in a frame, the 
corresponding samples were counted. Only when the counting 
number of samples was larger than a given counting threshold, 
this frame was marked as valid. EMG signals with continuous 
three valid frames were applied for motion class 
determination and motion execution. 

D.  Quantification of Control Performance 

Besides the proposed strategy (called Strategy 1 in the 
following), the traditional “sequential mode-switching” 
method (called Strategy 0 in the following) was also applied 
in the study and discussed together with Strategy 1 as a 
comparison. Three performance measures were proposed and 
calculated to quantify and compare different strategies: 

(1) Mode-selection rate (in Strategy 1), defined as the ratio 
of correct mode selection over the total selection trials 
controlled by the speech, i.e. the recognition rate of speech 
signals; 

(2) Mode-switching rate (in Strategy 0), defined as the 
ratio of correct mode switching over the total switching trials 
controlled by the co-contraction of a muscle pair, i.e. the 
recognition rate of EMG signals from muscle pair 
co-contraction; 

(3) Action-execution time (in both strategies), defined as 
the time needed to complete a whole action without any 
misoperation. The action might contain a series of motions, 
and the procedure to finish a motion included the mode 
selection (in Strategy 1) or mode switching (in Strategy 0), 
and the motion execution. 

 All the tests were repeated at least three times and the 
results (recognition rate and time) were calculated as the 
average value of the repeated measurements. 

III. RESULTS 

A.  Mode Selection/Switching 

As shown in Table II, for Strategy 1, a mode-selection rate 
of 100% was achieved for all the able-bodied subjects and the 
transhumeral amputee, indicating the mode could be 
successfully selected by speech with the present speech 
recognition system. There was no difference between subjects 
on mode selection since all the subjects had full language 
competence. For Strategy 0, however, the mode switching by 
the co-contraction of bicep and tricep was relatively hard or 
even impossible. Only the able-bodied subject A1 could 
conduct the co-contraction completely without any error, 
since he often took body exercise and was relatively muscular. 
The able-bodied subject A2 could fulfill the co-contraction 
partly, and both the able-bodied subject A3 and the 
transhumeral amputee B could not conduct the co-contraction 
at all, due to the weakness of their full/residual muscles. 
Especially for the amputee, his limb function was almost lost 
after the amputation, and therefore the residual muscles were 
lack of exercise and became atrophic. 

TABLE II.  MODE-SELECTION/SWITCHING RATE 

Subject 

Mode-selection rate 

in Strategy 1 

Mode-switching rate 

in Strategy 0 

A1 100% 100% 

A2 100% 86.7% 

A3 100% Not available 

B 100% Not available 

 

B. Functional Action Execution 

A functional action of “water pouring” was specified, 
which included a series of motions: “hand-closing” to hold a 
cup with water inside, “elbow-flexion” to lift up the cup, 
“wrist-pronation” to pour the water out, and then 
“wrist-supination”, “elbow-extension”, and “hand-opening” 
to return. The execution time to finish the action continuously 
without any misoperation was measured, as shown in Table III. 
It can be seen for Strategy 1 all subjects could finish the 
required action with execution time of 19.6, 16.0, and 19.2 s 
for the able-bodied subjects and of 21.9 s for the transhumeral 
amputee, and the difference between the able-bodied subjects 
and the amputee was not very obvious. For Strategy 0, on the 
contrary, a longer execution time of 25.8 and 42.3 s was 
measured for the able-bodied subjects A1 and A2, 
respectively. Especially for the subject A2, there was a large 
increase of execution time compared with Strategy 1. Since 
the motion switching by co-contraction of muscle pair was not 
possible for the able-bodied subject A3 and the transhumeral 
amputee B, there was no measured execution time for them.  

IV. DISCUSSION 

Compared with the traditional control strategy where the 
“sequential mode-switching (joint-switching)” is applied, the 
most difference of the proposed strategy is that the mode was 
chosen directly by the amputee’s speech signals, which 
enables more easy and flexible control of multifunctional 
prostheses with multiple DOFs. In Strategy 0 the modes are 
switched by the co-contraction of a pair of muscles of limbs, 
however, this simultaneous co-contraction would be difficult 
to conduct, not only for the amputee but also for the 
able-bodied, as demonstrated by the experimental results. 
Only the able-bodied subject with relatively strong muscles 
could fulfill the co-contraction without much difficulty, and 
the transhumeral amputee could not do the co-contraction at 
all due to the weakness of the residual muscles. Besides, the 
sequential mode-switching is inefficient, and the mode has to 
be switched frequently even a simple action is desired. It was 

TABLE III.  ACTION-EXECUTION TIME 

Subject 
Action-execution time (s) 

Strategy 1 Strategy 0 

A1 19.6 25.8 

A2 16.0 42.3 

A3 19.2 Not available 

B 21.9 Not available 

3604



  

found that most of the extra time used in Strategy 0 was 
consumed for the awkward sequential switching, especially 
when twice of continuous switching were required, e.g. from 
“hand” to “elbow” through “wrist”. What is more, the frequent 
switching may make the muscles tired, and a short rest is 
therefore unavoidable, which further lowers the efficiency. In 
Strategy 1, the direct mode-selection by speech is much easier 
to operate, as confirmed by the high mode-selection rate for 
all the subjects. In addition, the use of speech requires no 
long-term training or adaption process. The pronunciation and 
recognition of a simple keyword is a fast process compared 
with the co-contraction of muscle pair and the sequential 
switching, and therefore decreases the action-execution time. 
In the proposed strategy, EMG is still used as the executive 
signals for motions. This makes the prosthesis control safer, 
because a wrong speech order or environmental noise will not 
execute any motion as long as the prosthesis user does not 
contract the corresponding muscle. Note that flexible control 
of prostheses with more DOFs may also be realized with the 
proposed strategy, since the number of modes represented by 
speech is unlimited due to the unlimited speech signals. 

Considering normal speech signals conducted by air can 
be easily interfered by environmental noises and it is 
inconvenient and embarrassing if prosthesis users “talk” to 
their own “prostheses”, the non-audible murmur (NAM) will 
be used as control signal instead of the speech signals of 
current study for possible improvement. NAM is conducted 
through human body such as muscle tissues and is less 
interfered by surroundings. Besides, they can not be heard by 
people around and therefore keep users’ privacy. Further 
investigations will be conducted on the use of NAM for 
prosthesis control. 

V. CONCLUSION 

A control strategy for multifunctional prostheses based on 
the combination of speech and EMG signals has been 
proposed, where the amputee’s speech signals were used to 
select a mode of a prosthetic arm with multiple DOFs, and 
then the EMG signals recorded from the residual muscles of 
limbs were used to determine the motion class involved in the 
selected mode, and execute the motion. This strategy takes the 
advantage of speech such as direct, flexible, no long-term 
training process, and etc, and the muscle burden is released 
from the awkward mode-switching by the co-contraction of 
muscle pair which is used in the traditional control method. 

The proposed strategy may be implemented to the current 

myoelectric prostheses by embedding an speech processing 

module and a mode-selection terminal, and the present 

EMG-controlled motion-execution part can still be used, 

which does not increase the cost very much. The practicality 

of the strategy has been temporarily demonstrated by 

experimental results with high mode-selection rate and 

relatively short action-execution time. A positive users’ 

experience was also reported by all the subjects. 
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