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Abstract— Label-free proteomics is a promising technology
that provides qualitative and quantitative high-throughput anal-
ysis for determining the differential expression levels of proteins
in proteomics. Protein quantification using mass spectrometry
data plays a key role in analyzing proteins quantitatively and
lays a foundation for further research such as biomarker
discovery and signaling pathway construction in proteomics.
Current quantification approaches use spectral counting, chro-
matographic peak area, peptide count, or sequence coverage
to compare and quantify global protein expression differences.
Although existing protein quantification methods have been
contributing to quantify protein expression, however, no single
method has been widely acknowledged due to their pros and
cons depending on data and experiment setting. To make things
worse, different quantification methods often tend to produce
conflicting results with each other, which make it difficult to
derive a reliable conclusion. In order to obtain significant
protein biomarker candidates among thousands of proteins in
the samples, a well-designed method to validate quantitative
protein measurements is required as well as a high quality of
protein identification and protein quantification.

In this paper, we propose a statistical framework for reliable
protein quantification (SF-RPQ) adapting Dezert-Smarandache
theory from the artificial intelligent. SF-RPQ is designed to
validate quantitative measurements of proteins with statistical
models, including probabilistic approaches to quantify the relia-
bility of the measurements. The proposed framework SF-RPQ
was assessed by the experiments with the publicly available
NCI-funded data, where SF-RPQ showed a good performance
with high accuracy.

I. INTRODUCTION

Label-free quantitative proteomics has been widely used

to identify and quantify the large number of proteins in

complex biological samples, especially in order to study the

differential protein expressions [1], [2], [3]. Label-free quan-

titative proteomics provides efficient mechanisms to analyze

biological samples rapidly. Therefore, label-free technologies

such as LC-MS (Liquid chromatography-mass spectrome-

try) and LC-MS/MS (liquid chromatography-tandem mass

spectrometry) have been developed in concert with current

advances in rapid data acquisition, ultra-high sensitivity, and

dynamic range for the global shotgun proteomics study [4].

Protein quantification is a significantly important step for

further proteomics research in label-free quantitative pro-

teomics. None of the further research such as biomarker dis-

covery and signaling pathway construction can be achieved

without accurate protein quantitation. However, obtaining
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accurate quantitative measurements of proteins from tandem

mass spectrometry data is still challenging. Moreover, it is

difficult to design a universal quantification method due to

various equipments of the mass spectrometer, sample prepa-

ration methods, experimental environments, and different

goals of biological problems. No single method has been

widely acknowledged due to their pros and cons depending

on data and experiment settings.

Current quantification approaches use spectral counting,

chromatographic peak area, peptide count, or sequence cov-

erage to compare and quantify global protein expression

differences. Although existing protein quantification methods

have been reported suitable and contribute in quantifying pro-

tein expression, those quantification methods often produce

conflict in providing protein abundance in the sample, which

make it difficult to analyze the relation of the protein ex-

pression between control and treated samples. Also, proteins

are often not identified simultaneously across all samples. In

practice, only a few proteins simultaneously identified over

all the samples are typically selected among thousands of

proteins in the samples in order to obtain strongly reliable

experimental results. However, it may possibly remove huge

amounts of putative biomarker candidates with high proba-

bility. More importantly, while a large number of proteins can

be identified simultaneously in label-free proteomics, only a

few numbers of proteins tend to be a biologically significant

biomarker. Thus, the development of methods which deal

with both such confliction and the uncertainty of samples

has been strongly demanded.

II. METHODS

We developed a statistical framework for reliable protein

quantification (SF-RPQ) adapting a fusion method. Dezert-

Smarandache theory (DSmT) was proposed by J. Dezert and

F. Smarandache to deal with conflicting evidences and to

enhance reasoning systems fusing heterogeneous data and

information [5], [6], [7]. DSmT controls uncertainty coming

from conflicting evidences and consequently makes a rational

decision one step ahead of Bayesian probability [5]. While

Bayesian theory is based on the classical ideas of probability,

DSmT focuses more on interpretation of uncertainty and

how to manage the information arising from evidences. Due

to voluminous mathematical and philosophical concepts, the

description of DSmT is not included in this paper.

We apply this fusion theory to deal with mutually con-

tradictory information provided by multiple protein quan-

tification methods, which is considered as evidence. Then,
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the statistical framework assigns probabilistic degrees to

determine whether the evidences are reliable or not.

Suppose that there are implicit peptide assignments (num-

ber of peptides, peptide ion intensity, and so on) analyzed

by peptide/protein identification tools (e.g. Mascot and SE-

QUEST) and associated with P proteins in N samples of

the binary class, X̃ (treated) and Ỹ (control), comprising of

tandem mass spectrometry data, i.e., x̃pi ∈ X̃, ỹpi ∈ Ỹ for the

pth protein and the ith sample, where x̃pi and ỹpi represent

a set of implicit peptide assignments corresponding to a

protein. Protein quantification methods define their functions

with those sets of peptide assignments to quantitate proteins.

Let F(q)(x̃pi) be the function of the qth quantification method

with implicit inputs x̃pi, and it returns the quantity of the pth

protein in the ith sample. Now, we have manipulable X and

Y matrices for treated and control data sets, respectively,

X = [x1, x2, ..., xQ], Y = [y1, y2, ..., yQ], (1)

xq = log2













Fi(x̃11) · · · Fi(x̃1N )
...

. . .
...

Fi(x̃P1) · · · Fi(x̃PN )












(2)

where Q is the number of protein quantification methods

utilized to combine (1 ≤ q ≤ Q), and the binary logarithm

is taken for efficient manipulation.

All measurements produced by protein quantification

methods are considered as evidences.We assume that the

measurements can be validated by the two hypotheses:

the measurement is reliable (1) or not (2). The frame of

discernment is then defined Θ = {θp, θ¬p} in DSmT. The

power set of the Θ is 2θ = {φ, {θp}, {θ¬p}, {θp∪θ
¬p}, {θp∩

θ
¬p}} that can be interpreted as reliable ({θp}), non-reliable

({θ
¬p}), possibly both reliable or non-reliable but uncertain

({θp∪θ
¬p}), and a conflicting evidence ({θp∩θ

¬p}). A bpa

function assigns a degree of the belief to each element of the

power set; m(·) : 2θ 7→ [0, 1]. That is, m(θp) and m(θ
¬p) are

bpa functions that assign the degree of how likely reliable the

measurement of the protein is or not, respectively. We define

the bpa functions mathematically to represent the reliability

of the measurements.

A. A bpa function for repeatability

The frequency of occurrence of proteins over the samples

may represent repeatability in identification. Proteins can be

often identified with a low score, which represents little

similarity between the given mass spectrum signals and

the hypothetically obtained signals from protein databases.

Even though a protein is assigned a high score by protein

identification tools, the protein of a low frequency would be

doubtable. The bpa function for repeatability, mr
p(θp), for

the pth protein is defined as,

mr
p(θp) =

∑N
i=1

∑Q
q=1

(

sgn(x
(q)
pi ) + sgn(y

(q)
pi )
)

2QN
(3)

mr
p(θp) = mr

p(θp)(1− 2T ) (4)

mr
p(θ¬p) = (1−mr

p(θp))(1− 2T ) (5)

mr
p(θp ∪ θ

¬p) = 2T, mr
p(θp ∩ θ

¬p) = 0, (6)

where x
(q)
pi describes the abundance measurement of the pth

protein produced by the jth protein quantification method

in the ith sample. The sgn(x) function returns one if the

pth protein is identified in the sample, otherwise zero.

The tolerance T is introduced to set the upper and low

bounds when assigning the belief degree to avoid the perfect

belief assignment. mr
p(θ¬p) function in (5) is determined by

(1 −mr
p(θp)) × (1 − 2T ) in this study assuming that there

is no confliction between θp and θ
¬p in (6). Note that the

confliction between θp and θ
¬p does not mean the disparity

between the evidences that multiple protein quantification

methods generate. The evidences of disparity will be dealt

with when combining this information using PCR5. The

settings of (5) and (6) are basically applied to all of the

following bpa functions if not specified.

B. A bpa function for reproducibility

In an ideal system, a protein quantification method would

produce the consistent measurements of the protein abun-

dances over the samples. Thus, quantification methods have

been ultimately developed to provide high reproducibility

and been evaluated by proving their high reproducibility [8],

[9]. In order to measure the degree of reproducibility, the

distribution comprising of standard deviations of x
(q)
p over

the samples is considered. The standard deviation distribu-

tions are computed over the samples in (9). Then, we apply

a logistic function to convert them to a probabilistic system

in (10).

s
x
(q)
p

=

√

∑

(x
(q)
p −

∑

x
(q)
p /N)2

N
(7)

s
y
(q)
p

=

√

∑

(y
(q)
p −

∑

y
(q)
p /N)2

N
(8)

Sp = {s
x
(1)
p

, ..., s
x
(Q)
p

, s
y
(1)
p

, ..., s
y
(Q)
p
} (9)

ms
p(θp) =

(1− 2T )

2Q

2Q
∑

i=1

(

1−
1

1 + e−(Sp−µS)/σS

)

,(10)

where s
x
(q)
p

and s
y
(q)
p

are the standard deviation vectors that

the qth quantification method produces. µS and σS are the

mean and the standard deviation of the standard deviation

distribution (Sp) derived from all data sets, respectively, i.e.,

µS =
∑2Q

q=1 (Sp)q/2Q, σS =
√

∑2Q
q=1 ((Sp)q − µS)

2
/2Q.

C. A bpa function for consistency

A protein ratio (x̃p/ỹp) between a control and a treated

class provides protein significance showing protein expres-

sion changing. While ms
p(·) in (10) is designed for repro-

ducibility within each single protein quantification method,

the bpa function mc
p(·) defines the consistency between mul-

tiple protein quantification methods. All possible pairwise

combinations of sample data produce protein ratio distribu-

tions (e.g., triplicated samples of binary classes produce a

total of nine protein ratios) in (11). The density distribution

D
(q)
p (x) of protein ratios for the qth protein quantification
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method is generated using a kernel density estimator in (12).

z(q)
p = {x

(q)
pi − y

(q)
pj ; 1 ≤ i, j ≤ N} (11)

D(q)
p (x) ∼

1

N2h

N2
∑

i=1

K
(x− (z

(q)
p )i

h

)

, (12)

where K(·) is a kernel function (Gaussian Kernel function

is used in this study), and h is a parameter of the scaled

kernel. Note that x
(q)
pi and y

(q)
pj are logarithmic so thus protein

ratios are calculated by subtraction not division in (11). On

this wise, protein ratio distributions are generated for each

protein quantification method. The dissimilarity between the

distributions that each quantification method produces are

computed by symmetric Kullback-Leibler divergence (KL

divergence) [10] with pairwise comparison,

KLp = {
1

2

(

∑

D(i)
p ln

D
(i)
p

D
(j)
p

+
∑

D(j)
p ln

D
(j)
p

D
(i)
p

)

; (13)

1 ≤ i, j ≤ Q, i 6= j}.

The bpa function for consistency mc
p(·) finally defines it with

a logistic function,

mc
p(θ¬p) =

(1− 2T )

1 + e(KLp−µKL)/σKL
(14)

mc
p(θp) = (1−mc

p(θp))(1− 2T ), (15)

where µKL and σKL are the mean and the standard deviation

of the KLp distribution, respectively.

D. Fusion of uncertain and conflicting evidences

Basic probability assignment functions are defined to

quantify the degrees of repeatability, reproducibility, and

consistency between multiple quantification methods in the

probabilistic system. The total degree of beliefs for the pth

protein is obtained by the combination of mr
p(·), ms

p(·), and

mc
p(·) using a PCR5 combination rule [11],

mt
p(·) = mr

p(·)⊕ms
p(·)⊕mc

p(·). (16)

Belief (Bel) and plausibility (Pl) functions are computed

with the total belief for each power set of Θ. The belief

and plausibility function provide the possible interval for

true belief ([Bel(θp), Pl(θp)]). The range of the probabilities,

rather than a single probabilistic number as Bayesian theory

has been done, provides more capable powers to represent

the uncertainty. For example, more evidences typically make

narrower range of the probabilities and expose stronger

beliefs while Bayesian theory lacks the power. Note that

Bayesian theory deals with the problems only on average

no matter what the size of data is.

In order to make a rational decision, DSmT furthermore

proposed a generalized pignistic transformation [12], The

generalized pignistic transformation provides the Bayesian

probabilistic approach for the classification problems. The

discriminant to determine whether the protein quantitation is

reliable or not is defined with a threshold t,

P (θp)

P (θ
¬p)

> t. (17)

III. EXPERIMENT RESULTS

We assessed the proposed framework by experiments

with the data sets which are well characterized and pub-

licly available for download from the Tranche repository

(https://proteomecommons.org/tranche). The data was de-

signed by NCI-funded Clinical Proteomic Technology As-

sessment for Cancer (CPTAC) group to test repeatability and

reproducibility in proteomics for inter-laboratory compara-

bility. In CPTAC data sets, human proteins (Sigma UPS-

1) were spiked into digested yeast (60ng/uL) with five

different levels (0.25, 0.74, 2.22, 6.67, and 20.00 fmol/µL)

as equimolar protein mixtures, where each sample was

triplicated. CPTAC 6A∼6E for convenience sake denote

the data sets corresponding the different spike levels.The

samples were distributed to laboratories, and mass spectra

were generated by different kinds of mass spectrometers. For

this experiment, the CPTAC samples spiked into yeast with

only 6.67 (CPTAC 6D) and 20.00 (CPTAC 6E) fmol/µL
were used, since the human proteins were rarely detected

in CPTAC 6A, CPTAC 6B, and CPTAC 6C data sets. CP-

TAC 6D and CPTAC 6E were used as treated and control

data set, respectively, where the protein ratio (ground truth,

log2(6.67/20.00) = −1.5842) is known.

Mascot daemon (Version 2.2.2) identified proteins with

the UniProt KB/Swiss Prot database (released in Jan. 2012).

Peptide mass tolerance was set to ±10 ppm, fragment mass

tolerance was ±0.5 Da. Carbamidomethyl and oxidation

were set for variable modifications. None was set for fixed

modifications. Among double and triple-charged peptides

with one allowed missed cleavage identified from the data

set, only Sigma UPS-1 proteins were considered.

A total of 17.75 and 25.5 proteins on average are identified

in CPTAC 6D and CPTAC 6E of four data sets, respectively.

Three spectral counting-based protein quantification methods

such as NSC (normalized spectral count), NSAF (normalized

spectral abundance factor), and SIn (normalized spectral

index) were used for F(q)(x) functions [13], [14], [8].

However, the proposed framework is rather flexible, allowing

the combination of more quantification methods and software

such as Progenesis-LC/MS, MSight, MZmine, OpenMS and

MSQuant.

The total degree of the belief, probability interval, and

pignistic probability, as a result, are listed in order of the

pignistic probability in Table I.

The reliability for the proteins is determined by the dis-

criminant with the threshold t in (17). The discriminant filters

out the measurements of the proteins that are classified as un-

reliable. The assessment of the proposed framework SF-RPQ

was measured by root-mean-square errors (RMSE), which is

the normalized squared sum between the protein ratios of the

proteins identified as reliable and true protein ratios. Fig. 1

illustrates the performance of the framework with various

parameter settings of the tolerance T and the discriminant

threshold t. The result shows that stronger power to measure

proteins abundance as higher discriminant threshold t is

applied. The measurements identified as reliable appear to
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TABLE I: Quantifying the reliability of proteins in ‘LTQ

Orbitrap@86’ data set (T = 0.1). The 23 protein, which are

observed in at least two samples, are listed.

UniProt
Accession

mt(θp)1 [Bel Pl]2 P (θp)3

P02787 .7394 [.7394 .7451] .7422
P55957 .7382 [.7382 .7438] .7410
P01127 .7162 [.7162 .7223] .7190
P04040 .7084 [.7084 .7144] .7113
P00918 .6827 [.6827 .6887] .6856
P12081 .6750 [.6750 .6806] .6779
P01031 .6646 [.6646 .6704] .6675
P02768 .6563 [.6563 .6627] .6593
P08263 .6560 [.6560 .6621] .6589
P06732 .6341 [.6341 .6398] .6371
P51965 .6148 [.6148 .6208] .6178
P10636 .5889 [.5889 .5947] .5919
P07339 .5692 [.5692 .5752] .5723
P02788 .5450 [.5450 .5509] .5481
P01344 .5443 [.5443 .5503] .5474
P10145 .5277 [.5277 .5347] .5307
P08311 .4588 [.4588 .4648] .4620
P00709 .3728 [.3728 .3803] .3761
P00441 .3472 [.3472 .3535] .3504
O00762 .3257 [.3257 .3315] .3290
P02144 .2375 [.2375 .2432] .2410
P02741 .2366 [.2366 .2438] .2401
P01008 .2346 [.2346 .2424] .2380

mt(θp)1: the total degree of the beliefs using PCR5, [Bel Pl]2: the interval
for true belief, P (θp)3: the pignistic probability

have good approximation to the true. Note that RMSE is

normalized by the number of samples to counterbalance the

different numbers.
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Fig. 1: The assessment of the performance of SF-RPQ with

various parameter settings of the tolerance T (0 < T < 0.4)

and the discriminant threshold t (0 < t < 6).

IV. CONCLUSIONS

Accurate and reliable protein quantification is indispens-

able in proteomics. Although large numbers of quantification

methods and software have been introduced for this purpose,

validating the protein quantitation is strongly necessary for

reliable experiments and analysis. To this end, we set out

to develop a novel statistical framework for reliable protein

quantification based on Dezert-Smarandache theory. We built

statistical models to validate measurements arising from

multiple protein quantification methods comprehensively. We

have fully evaluated the performance of the method with

publicly available data sets. Plots with RMSE were provided

to assess the performance of the proposed framework. The

experimental result shows that this framework gives a distinct

advantage of providing a probabilistic reliablity indicator

of the metrics. The proposed framework SF-RPQ can be

easily extended, utilizing either more quantification methods

or software as well as various database protein identification

tools as evidences. The proposed framework would promise

successful further research such as biomarker discovery and

signaling pathway construction.
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