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Abstract— Kinases in a developing neuron play important
roles in elongating a neurite with their complex interactions.
To elucidate the effect of each kinase on neurite elongation
and regeneration from a small set of experiments, we applied
machine learning methods to synthetic datasets based on a
biologically feasible model. The result showed the ridged partial
least squares (RPLS) algorithm performed better than other
standard algorithms such as naive Bayes classifier, support
vector machines and random forest classification. This suggests
the effectiveness of dimension reduction done in RPLS.

I. INTRODUCTION

Any biological system can show various functions by

complex interactions among biological molecules. A devel-

oping neuron also forms protruding objects called neurites

by the network of various molecules: kinases, phosphatases,

cytoskeletal molecules and chemical elements such as cal-

cium ions. If the mechanisms of the network for neu-

rite elongation and regeneration would be elucidated, new

therapies targeting it might be possible for some clinical

conditions associated with a loss of axon and/or dendrite

connectivity such as spinal cord injury, traumatic brain injury,

and apoplexy.

Of all the molecules related to regulating neurite elon-

gation, kinases play the most important roles [1], [2], [3].

In fact, some kinases enhance neurite elongation and others

inhibit it. If the effectiveness of each kinase is elucidated, the

neurite elongation can be controlled for medical purposes.

There are two biological approaches to solve this problem.

The one is gene manipulation, where a single kinase is

inhibited one by one from hundreds of kinases to find

effective combinations of kinases [4], [5]. This is costly and

time-consuming. The other is pharmacological application,

where a chemical drug is used for controlling neurite length

[8]. Since a chemical drug inhibits a set of kinases simulta-

neously, this is more efficient to find effective combinations.

However, it is still unclear which set of kinases should be

inhibited by how much levels.

The problem of finding effective combinations of kinases

from the experimental observations of chemical drug ap-

plications is mathematically ill-posed. For example, Broad

Connectivity Map compound database [6] provides about

n = 1300 profiles of drug application, which is much smaller
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than the number of genes (p > 9 million) [7] Hence, the

effectiveness of each kinase can not be determined uniquely.

To ease the problem above, this paper formulates it as

a classification problem. That is, the task is to determine

whether a drug has the elongation effect or the shrinkage

from a given set of drug-effect pairs. Nevertheless, the

problem is still difficult and naive method such as support

vector machines (SVM) does not work well as shown later

due to high-level noise and high dimensionality of the kinase

space.

One approach to avoid such degradation is dimension

reduction. For similar structure data, the partial least squares

method (PLS) has been applied [15], [17], [18], [19]. PLS

is similar to principal component regression (PCR) [20],

[21] but it performs a regression in a score space instead

of the raw data space. By virtue of the property, PLS

performs well even when the dataset has a strong correlation

in variables that are kinases in our case. Actually many

biological molecules are similar in their functions. Hence,

our algorithm is based on PLS.

In the preceding study [22], a method combining PLS and

ridge penalized logistic regression (RPLS) was applied for

data-mining of gene microarray data in molecular biology.

The microarray data also has small samples and large number

of genes. In this study, we applied RPLS to our synthetic

datasets including kinases and neurite lengths in order to

know how well it works. The synthetic datasets were made

using a mathematical model of the biochemical reactions

since natural data have no ground truth. To examine the

efficiency of RPLS, we compared the result by PLS with

those by other statistical methods including naive bayes

classifier (NBC), SVM, and random forest classifier (RFC).

The result showed the superiority of RPLS for the kinase

data, suggesting that the dataset contains the correlation

and/or some structures among kinases.

II. METHOD

A. Dataset

The interactions between biological molecules are bio-

chemical reactions. A primary protein-protein interactions

can be described as the state transition between monomer

and binding states. Although the detailed processes for the

enzymatic reaction associated with kinase and phosphatase

are so complicated that three types of state transitions are

necessary, linearization of the reaction gives insight to its

fundamental properties.

The simplest biochemical reaction equations for enzymatic

reaction is a balance between increase and decrease rates,
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that is,
dai

dt
= kf

i (1− ai)− kbai, (1)

where ai is the normalized concentration of the ith kinase

in the phosphorylated state, and thus 1 − ai is that the

dephosphorylated state (Fig. 1A). The parameters, kf
i and

kb, are the forward (phosphorylation) and backward (dephos-

phorylation) reaction rates, respectively.

Here we introduced two assumptions on kinases. The one

is that each kinase functions as an enzyme (active state)

when it is phosphorylated or dephosphorylated. The other

is that the phosphorylation level of each kinase is regulated

by other active kinases while dephosphorylation is done by

phosphatases with the constant rate. The assmptions means

that only the forward reactions are modeled as functions of

the other kinases as

kf
i =

∑

j∈act,j 6=i

kf
j aj +

∑

m∈inact,m 6=i

kf
m(1− aj), (2)

where j is the index of effective kinases in the active state,

and m is that in the inactive state.

The parameters, kf
j and kf

j , are constant for the normal

condition, but reduced to smaller values under the drug

(kinase inhibitor) conditions. We chose one of downstream

variables (ai) as the normalized neurite length.

We prepared 160 kinases and 167 drugs in total. The

parameters and their reduction rates, kf
j and kf

j , by the

drugs were randomly selected and we have 167 inhibition

patterns of kinases and the corresponding neurite length by

computing the reaction equations numerically. The highest

33 % of drugs in neurite length and the lowest 33 % were

labelled one (elongation) and zero (shrinkage), respectively

(Fig. 1B). Finally, we had the 112 x 160 matrix, Z, which

has an element, zi,j , representing the inhibition level of the

j-th kinase by the i-th drug.

B. Classification algorithms

Ridged partial least squares (RPLS)

Partial least squares (PLS) is a tool for linear regression

of continuous variables and a tool for dimension reduction

[15], [17], [18], [19]. To apply PLS to binary classification

problems, Fort and Lambert-Lacroix proposed a new method

combining PLS and Ridge penalized logistic regression,

which is called Ridge PLS (RPLS) [22]. The algorithm of

RPLS is divided into the following two steps: the regular-

ization step and the dimension-reduction step.

Step 1: Regularization step (Ridge logistic regression step)

Ridge penalized logistic regression is applied in this step

and the estimators are used as target variables for the

following PLS. In logit models, the conditional probability

of Y given X is expressed by

P (Y = 1|X = x; γ) =
1

1 + exp(γx)
, (3)

Fig. 1. (A) Schematic figure of biochemical reaction by the kinases. The
jth kinase is activated when it is phosphorylated or dephosphorylated and
then phosphorylates the ith kinase. (B) Kinase inhibitor rate matrix (160
kinases by 167 drugs). Neurite length vector was computed from the drug
application in the corresponding row. Top 33% in the neurite length (dotted)
were labeled as one (elongation) and bottom 33% (gray) were labeled as
zero (shrinkage).

where γ is a weight vector and X is (1n, z.,1, · · · , z.,κ) with

the kinase inhibition level vector, z.,i, and the n-dimentional

vector, 1n, whose elements are all one.

The ridge estimator is defined as the unique maximizer of

the penalized cost function,

lRidge(γ) =
n

∑

i=1

{yiηi − ln(1 + exp(ηi(γ))}+
1

2
λγT Σ2γ, (4)

where λ > 0 is the shrinkage parameter, and Σ2 is a diagonal

matrix with entries Σ2
1,1 = 0,

Σ2
j,j =

n
∑

i=1

(

Xi,j −
1

n
1

T
nX.,j

)2

, j ∈ {2...p}. (5)

The estimation is computed as the limit of a converging

Newton-Raphson sequence; this algorithm is known as the

RIRLS [23]. Let W (γ) be the diagonal n × n matrix with

diagonal entries Wi,i(γ) = πi(γ)(1− πi(γ)). Each iteration

divides into two steps,

z(t) = Xγ(t) + (W (t))−1(y − π(t)), (6)

γ(t+1) = (XTW (t)X + λΣ2)−1XT W (t)z(t), (7)

where W (t) and π(t) are shorthand notations for W (γ(t))
and π(γ(t)). RIRLS can thus be considered as an iterative

weighted least square regression of an Rn-valued pseudo-

variable z(t) onto the columns of X. We denote this algorithm

by RIRLS (y, x).

Step 2: Dimension reduction step (Weighted PLS step)

PLS defines κ W -orthogonal scores (tk)1≤k≤κ, linear

combinations of the columns of X such that for all k,

1
T
nWtκ

=0 and (ii) performs a W -weighted least squares
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regression of y on (1n, t1, ....tκ). This yields the decom-

position

y = q01n + q1t1+, ....,+qκtκ + fκ+1 (8)

= Xγ̂PLS,κ + fκ+1, (9)

where the residual term fκ+1 is W -orthogonal to the vectors

(1n, t1, ...., tκ). Contrary to classical dimension-reduction

methods (such as PCR), the scores depend on the response

vector y; roughly speaking, given (tk)1≤k≤l, tl+1 is the

linear combination of the columns of X, i.e. is of the form

tl+1 = Xc, which is the most informative on the residual

response variable fl+1, when information is defined in terms

of the weighted covariance |Cov(
√

WXc,
√

Wfl+1)| (
√

W
denotes the square root matrix of W )[14]. While the maximal

number of PLS scores κmax can be lower than rank(X). in

practice, it is often equal to rank(X). Helland [14] shows

that the weighted PLS regression applied with κ = κmax

is nothing more than the weighted least squares regression.

In the literature, PLS is usually derived with W = I , the

identity matrix; we thus detail the algorithm in the weighted

case. Let Σ̂ be the p × p positive-definite diagonal matrix

with diagonal entries Σj,j , j ≥ 2, given by Equation (5).

1) Xs = XΣ̂−1 , t0 = 1n , E0 = Xs; f0 = y.

2) for k = 0, · · · , κ

qk = tTk Wfk/(tTk Wtk), (10)

fk+1 = fk − qktk (11)

Ek+1 = Ek − tktTk WEk/(tTk Wtk), (12)

tk+1 = Ek+1E
T
k+1Wfk+1. (13)

Hereafter, this procedure is denoted by WPLS

(y, X,W, κ). If X is full column-rank, this algorithm

determines a unique estimate γ̂PLS,κ satisfying

y − fk+1 = Xγ̂PLS,κ; if X is not full column-rank,

the procedure above yields the minimal norm vector among

all the vectors verifying y − fk+1 = Xγ.

Predictiction of test dataset

In the RPLS, the estimator γ̂PLS was defined by the

following.

1) (z∞,W∞)← RIRLS(y, X, λ)
2) γ̂PLS,κ ←WPLS(z∞, X,W∞, κ)

A detailed implementation is given in [22]. The first step

builds a continuous response variable z∞ for the input of

PLS, the ‘dispersion matrix’ of which is (W∞)−1. This

explains the call, in the second step, to a weighted PLS

procedure with weight W∞. The use of Xs in WPLS and

of Σ in the penalized ridge criterion makes our procedure

invariant to the scaling of the data matrix.

For validation step, πi was computed by using γPLS

which was given by the training dataset. We labeled as 1

if πi > 0.5, and 0 otherwise. We calculated the percentage

of correct prediction from the predicted labels and those of

the test dataset.

Other algorithms

We tested four other classifiers: a Naive Bayes classifier

(NBC), a support vector classifier with a linear kernel

(SVC(L)), a SVC with a gaussian kernel (SVC(GK)), and

a classifier with random forest(RFC). We summarize key

properties of those classifiers in the following:

• Naive bayes classifier (NBC)

The Naive Bayes Classifier technique is based on the

so-called Bayesian theorem and is particularly suited

when the dimensionality of the inputs is high. Despite

its simplicity, Naive Bayes can often outperform more

sophisticated classification methods.

• Support vector machine (SVM)

Support vector machine is a familiar method in the

machine learning method and well known as a powerful

classifier. In this study, we applied two types of the

kernels: linear and gaussian.

• Random forest classification (RFC)

Random forest classification is an algorithm for clas-

sification developed by Leo Breiman [9] that uses an

ensemble of classification trees [10], [11], [12]. Each

of the classification trees is built using a bootstrap

sample of the data, and at each split the candidate

set of variables is a random subset of the variables.

Thus, random forest uses both bagging (bootstrap aggre-

gation), a successful approach for combining unstable

learners [12],[13], and random variable selection for tree

building. Each tree is unpruned (grown fully), so as to

obtain low-bias trees; at the same time, bagging and

random variable selection result in low correlation of

the individual trees. The algorithm yields an ensemble

that can achieve both low bias and low variance (from

averaging over a large ensemble of low-bias, high-

variance but low correlation trees).

Using the kinase inhibiter matrix (Fig. 1B), we trained

five statistical classifiers including RPLS and performed

prediction test for the untrained drug data. As a classification

test, each classifier was trained to predict those label from

the corresponding rows, and the percentage of correct clas-

sification was calculated with cross-validation. In the cross-

validation, we divided those rows into 10 groups. One group

was used as test data and the rest was used to train a classifier.

This procedure was repeated until all group was used as test

data.

III. RESULTS

The percentages of correct predictions of the five al-

gorithms for four datasets are shown in Fig. 2. For the

prediction by RPLS, the parameters, λ and κ, were decided

such that the score took the maximum for the dataset 1. The

same parameters were used for the prediction of the other

dataset. Nevertheless, RPLS showed good performances for

all the datasets. It was not the best classifier for the dataset

4, but was still superior to SVM. This result suggests that

the dimension of the dataset could be well reduced in the

PLS algorithm, as we expected.
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IV. CONCLUSION

We applied the method of RPLS to the synthetic datasets

to find key kinases which contribute to neurite elongation.

By comparing with the other classifiers, we showed that

RPLS can present the best performance, as we expected. This

suggests that RPLS is an effective algorithm for biological

data which has a correlation among target elements. The ap-

plication of RPLS to dataset given by biological experiments

is the future work.
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Fig. 2. Percentages of correct predictions for five applied classifiers;
naive bayes classifier (NBC), support vector classifier with a linear kernel
(SVC(L)), SVC with a gaussian kernel (SVC(GK)), classifier with random
forest(RFC), and ridge partial least squares (RPLS). The results given from
four dataset are shown. The horizontal solid line represents 95% significant
of the binomial test, and the dashed line indicates the chance level.
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