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Abstract— In this paper we propose an algorithm for dis-
tributed optimization in mobile nodes. Compared with many
published works, an important consideration here is that the
nodes do not know the cost function beforehand. Instead of
decision-making based on linear combination of the neighbor
estimates, the proposed algorithm relies on information-rich
nodes that are iteratively identified. To quickly find these
nodes, the algorithm adopts a larger step size during the
initial iterations. The proposed algorithm can be used in
many different applications, such as distributed odor source
localization and mobile robots. Comparative simulation results
are presented to support the proposed algorithm.

I. INTRODUCTION

Consider a set of N nodes as N = {1, 2, · · · , N}, where

the objective of each node is to estimate the M × 1 vector

wwwo that maximizes a cost function J(www). The cost function

in many estimation criteria possess in an important form as

a sum of N local functions {fk(www}
N
k=1

arg min
www
J(www) =

N
∑

k=1

fk(www) (1)

where fk(www) only depends on data available at node k. This

optimization problem arises in a variety of applications, rang-

ing from sensor networks to precision agriculture, environ-

ment monitoring, disaster relief management, smart spaces,

target localization, as well as medical applications [1], [2].

Although each node can solve the optimization problem via

a non-cooperative algorithm [3], in many applications, it is

more desirable to have a fully decentralized solution where

the statistical information for the underlying processes of

interest is not available. This motivates the development

of distributed adaptive estimation schemes (also known as

adaptive networks [4]). More details on adaptive networks

including different implementation schemes and performance

comparisons can be found in [5-10]

To implement adaptive networks, one has to compute the

gradient vector of cost function and make instantaneous

approximations for it. Reported adaptive network implemen-

tations rely on a basic assumption that the form of the cost

function, J(www), is known beforehand by all nodes in the

network. Consequently, its gradient vector and instantaneous

approximations can be computed. However, there are appli-

cations that the nodes do not know the form of the cost
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function beforehand [11-16]. In such applications, nodes can

only sense variations in the values of the objective function as

they diffuse through the space. An example is foraging model

for bacteria where the bacterial foraging for food by means

of moving towards the direction of increasing nutrients in

response to chemical signaling [11, 12]. In this scenario, one

can interpret the cost function J(www) as the concentration of

nutrients and local estimate wwwk,i ∈ R
2 as the position in the

plane of the kth bacterium at time i. Thus, the nodes (here the

bacteria), must sense the cost function at their locations and

move toward the location of the peak of the concentration.

This example reveals that it is necessary to find a distributed

solution to (1) when the cost function is not available and

nodes are required to converge to the peak of the objective

function through an adaptive diffusive process

In [11] a diffusion and cooperation model has been intro-

duced to understand the role of collaboration in bacteria for-

aging. The model addresses four factors: motion, diffusion,

observation, and decision. In [12] an iterative algorithm for

optimization over networks with mobile nodes is proposed.

It is assumed in [12] that the nodes have limited abilities and

they are allowed to cooperate with their neighbors to opti-

mize a common objective function. Moreover, in developing

the algorithm, it is assumed that the nodes do not know the

form of the cost function beforehand. However, the algorithm

in [12] uses a fixed step-size iterative algorithm and picks

the search vector as a linear combination of the neighbors’

last steps. In this paper we consider the problem of form (1)

with an important assumption that the nodes do not know

the form of the cost function beforehand. We interpret the

successive wwwk,i ∈ R
2 as location vectors and propose an

algorithm for adaptation over networks with mobile nodes.

We show that, the performance of algorithm in [12] can be

improved by employing the following ideas

• Using the data related to information-rich node1 instead

of linear combination of the neighbors’ estimates. More

precisely, when the measured signals are very noisy, a

linear combination of adjacent nodes does not provide

a good estimate to calculate gradient vector, which is

necessary in developing optimization algorithms with

unknown objective function.

• Using variable step-size in the iterative optimization

algorithm. We choose to use larger step sizes in the

initial iterations to increase the probability of finding the

information-rich nodes. This scheme not only improves

the convergence rate, but also improves the cost function

1The information-rich node is defined in the Section III.
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Fig. 1. A network with N nodes: the neighborhood of node k are
distinguished.

averaged per node defined as (in this paper, the average

locations of nodes)

ηav =
1

N

N
∑

k=1

J(wwwk,i) (2)

The proposed algorithm can be applied to different appli-

cations, such as distributed odor source localization [16],

cooperative prey herding modeling [17] and mobile robots

[18, 19].

The rest of this paper is organized as follows. Section II

gives the problem description. Section III focuses on for-

mulation and analysis. In section IV, comparative simulation

results are presented. Section V gives concluding remarks.

II. PROBLEM STATEMENT

Consider a network with N nodes as shown in Fig. 1. We

denote Nk(i) as the neighborhood of node k at time i which

is defined as the set of nodes that are connected to node k

at time i including itself. Moreover, define xk(i− 1) as the

noisy measurement of the cost function at node k and time

index i− 1 which is given by2

xk(i− 1) = J(wwwk,i−1) + vk(i− 1) (3)

where vk is measurement noise with variance σ2v . Assume

that at time i, each node k has access to noisy measurements

of the cost function at times i− 1 and i− 2. Using these

measurements, the local error signal is

zk(i) = xk(i− 1)− xk(i− 2) (4)

On the other hand, using a first-order Taylor series expansion,

we have

J(wwwk,i−1) ≈ J(wwwk,i−2) + [∇J(wwwk,i−2)]
Tuuuk,i (5)

where uuuk,i is defined as

uuuk,i
∆
= wwwk,i−1 −wwwk,i−2 (6)

It must be noted that the vector uuuk,i denotes the direction of

motion from wwwk,i−1 to wwwk,i−2. According to (3),(4) and (5),

we can relate the gradient vector to local error signal via

ek(i) ≈ [∇J(wwwk,i−2)]
T (wwwk,i−1 −wwwk,i−2) (7)

2Throughout the paper, we use boldface letters for vectors and small letter
for scalars.

where

ek(i) = zk(i) + v′k(i) (8)

where v′k(i) = vk(i − 1) − vk(i − 2). When the gradient

vector at wwwk,i−1 is available, we can use it to update from

wwwk,i−1 to wwwk,i as

wwwk,i = wwwk,i−1 + µ∇J(wwwk,i−1) (9)

where µ is the step size parameter. However, we consider

the fact that the nodes do not know the form of the cost

function beforehand. So we can not use (9) to update the

local estimates. Thus, the objective for each node becomes

that of determining a good estimate for this gradient vector.

III. PROPOSED COOPERATIVE OPTIMIZATION

SCHEME

A. Motivation

In a non-cooperative scheme, (i.e. when Nk(i) = {k})
each node can estimate the gradient vector at wwwk,i−1
as

uuuk,i

‖uuuk,i‖
. Therefore, for non-cooperative scheme, Eq (9)

changes to

wwwk,i = wwwk,i−1 + µ
uuuk,i

‖uuuk,i‖
I(ek(i)) (10)

where I(x) is the indicator function: it is equal to one when

x > 0 and zero otherwise. It is important to note that we

can get better result if we allow cooperation among nodes.

The algorithm in [12] is a cooperation based one that has

the following update equation

wwwk,i = wwwk,i−1 + µ

|Nk,i−1|
∑

ℓ=1

aℓkuuu
T
ℓ,i (11)

where | · | denotes the cardinality of a set at time i− 1 and

aℓk are the combination weights. In this work, we propose a

new algorithm to enhance the performance of (11) under the

conditions of the signals are noisy, thus a linear combination

of the neighboring nodes could not provide accurate estimate

of gradient vector. To improve the estimation performance,

we need to use the data related to information-rich nodes

more than other nodes. We can also use bigger step sizes

in the initial iterations to increase the probability of finding

the information-rich nodes. In the sequel, we propose a new

algorithm that considers the mentioned issues.

B. Method

As described in the introduction, the successive wwwk,i are

defined as location vectors. Thus, the neighborhood of node

k at time i− 1 is given by

Nk,i−1 = {ℓ ∈ N : ‖wwwℓ,i−1 −wwwk,i−1‖ ≤ r0} (12)

where r0 > 0 is some radius value. As we mentioned

before, if we want to improve the estimation performance

then we need to use the data related to information-rich nodes

more than other nodes. An information-rich node in the the

neighborhood of node k is a node that has the following

property

{j ∈ Nk(i) | J(wwwj,i−1) > J(wwwℓ,i−1), ∀ℓ ∈ Nk(i)} (13)
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Since we do not have access to J(wwwℓ,i−1) the noisy mea-

surements are used to find the information-rich node at node

k and time index i− 1 as

j = arg max
ℓ
{xℓ(i− 1) | ℓ ∈ Nk,i−1} (14)

Then, in (6) we replace wwwj,i−1 into wwwk,i−1 to get

uuumk,i = wwwj,i−1 −wwwk,i−2 (15)

where uuumk,i is the modified direction vector. To further

improve the performance, we replace the fixed step-size with

a variable step-size as

µk(i) = µk(i− 1) + βkzk(i) (16)

where βk is a positive constant. Using (15) and (16), we can

modify the update equation in (10) and (11) as follows
{

wwwk,i = wwwk,i−1 + µk(i)
uuum

k,i

‖uuum
k,i
‖I(ek(i))

µk(i) = µk(i− 1) + βkzk(i)
(17)

The pseudo code of the proposed algorithm is shown in

sequel.

The pseudo code of the proposed algorithm

Initialize wwwk,i = 0
for i = 1, 2, · · ·

for k = 1 : N
find the information-rich node at node k using (14)
compute modified direction vector uuum

k,i
using (15)

update the step size µk(i) using (16)

update local estimate wwwk,i = wwwk,i−1 + µk(i)
uuum

k,i

‖uuum
k,i
‖
I(ek(i))

end for
end for

IV. SIMULATION RESULTS

In this section we present the simulation results to evaluate

the performance of the proposed scheme. As a first example,

we consider a cost function as shown in Fig. 2. The cost

function is a two-dimensional Gaussian distribution with

two peaks placed at locations (−15,−12) and (15, 12).
Accordingly, the value of cost function at www = (x, y) is

given by

J(x, y) = bmax exp

(

−
(x− x1)

2
+ (y − y1)

2

2σ2b

)

+ bmax exp

(

−
(x− x2)

2
+ (y − y2)

2

2σ2b

)

(18)

where (x1, y1) = (−15,−12), (x2, y2) = (15, 12), bmax =
10, and σb = 4. It is important to note that the shape of cost

function may change in time. For example in foraging model

for bacteria, the bacteria consume food during the foraging

process, we assume that the density of nutrition (cost func-

tion) is not affected appreciably. This can be achieved by,

for example, continually replenishing the nutrition level [11

, 12]. At time index i = 0, nodes are randomly and uniformly

distributed over a 40 × 40 rectangular region centered at
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Fig. 2. The distribution of the cost function.

(0, 0) as shown in Fig. 3. The step size is µ = 0.8 and

β = 0.015 in the proposed algorithm. Moreover, we model

the measurement v2k(i) in (2) as i.i.d. Gaussian random

variable with zero mean and unit variance.

In Fig. 4 we have plotted the final locations of different

nodes for non-cooperative scheme in (10), the given algo-

rithm in [12] and the proposed algorithm. Obviously, in the

non-cooperative scheme does not work well and only a small

fraction of the nodes can find the optimum location. It is clear

from Fig. 4 that in the proposed algorithm, the most of nodes

have moved from their initial locations to the locations of

peak values. So, we can conclude that without cooperation,

only the bacteria close to the food source are able to reach

the peak values. Fig. 5 shows the average location of nodes

(ηk(i)) per iteration i. We can see again that the proposed

algorithm provides better performance in comparison with

the given algorithm in [12].
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Fig. 3. The initial position of nodes and the location of peak values of the
cost function at the (x1, y1) = (−15,−12), (x2, y2) = (15, 12).
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Fig. 4. The final locations of different nodes for non-cooperative scheme in (10) (left), the algorithm given in [12] (middle) and the proposed algorithm
(right).
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Fig. 5. The average location of nodes (ηk(i)) per iteration i.

V. CONCLUSIONS

The distributed estimation problems appear in many ap-

plications. Although adaptive networks are excellent solution

for such problems, however, in most available implementa-

tions it is assumed that the shape of the cost function is

known beforehand by all nodes in the network. To address

this problem, in this paper we proposed a new algorithm

that uses the data related to information-rich node, at every

node at every iteration, instead of linear combination of

the neighbors’ estimates. Moreover, in the proposed algo-

rithm bigger step sizes in the initial iterations are used

to increase the probability of finding the information-rich

nodes. Simulation results indicate the suitable performance

of the proposed algorithm. In our future work we will

provide mathematical substantiation, additional controlled

experiment and algorithm implementation into a real system

to support the claims.
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