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Abstract² Several different computational approaches have 

been developed to solve the gene prioritization problem. We 

intend to use the ensemble boosting learning techniques to 

combine variant computational approaches for gene 

prioritization in order to improve the overall performance. In 

particular we add a heuristic weighting function to the 

Rankboost algorithm according to: 1) the absolute ranks 

generated by the adopted methods for a certain gene, and 2) the 

ranking relationship between all gene-pairs from each 

prioritization result. We select 13 known prostate cancer genes 

in OMIM database as training set and protein coding gene data 

in HGNC database as test set. We adopt the leave-one-out 

strategy for the ensemble rank boosting learning.  The 

experimental results show that our ensemble learning approach 

outperforms the four gene-prioritization methods in ToppGene 

suite in the ranking results of the 13 known genes in terms of 

mean average precision, ROC and AUC measures. 

I. INTRODUCTION 

To find the most promising genes among a large list of 
candidate genes in account for a certain disease or function has 
been defined as the gene prioritization problem [17]. Because 
there are still so many genes for which we don¶W�NQRZ�WKHLU�
functions and roles in cells. The traditional in-vitro 
experiments with large samples from both normal and disease 
tissues usually demand much cost and efforts. But nowadays, 
many big biological data are becoming more and more 
accessible via different kinds of databases such GenBank, 
PDB, OMIM, etc. In the last decade, several different 
computational approaches have been developed to solve this 
challenging problem. For example, prioritizing disease 
candidate genes rely on connecting network-based data 
[7][8][10][18] and others integrate multiple data sources to 
prioritize candidate genes [9][21]. Since very gene 
prioritization method should have its own strength and 
weakness [6], we should be able to find a way to combine 
them together to achieve a better performance by assigning a 
proper weight of each prioritization method [19]. The 
ensemble learning is an effective principle to solve such kind 
of problems [1][3][4].  

In this paper, we focus on how to use ensemble learning to 
combine various gene prioritization methods and to achieve a 
better performance result. We adopt a Rankboost learning 
algorithm as a solution to gene prioritization problem [5]. It 
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optimizes gene prioritization for a disease using some known 
disease genes as training set. However, to improve the gene 
ranking by ensemble learning, a naïve combination of 
traditional Rankboost learning algorithms requires intensive 
calculations [5] that cannot have good performance. Therefore, 
we improve its efficiency by employing an ensemble learning 
combination strategy on the Rankboost learning method. 
Instead of ranking all the genes, we also specify a threshold to 
limit the scope of computation. Only those genes fall within 
the scope are to be computed. Another problem we 
encountered is, due to lack of discriminative ranking 
information for disease genes as ground truth, the rank scores 
of many genes by using the original prioritization methods 
turn out to be the same. Hence, we add a weighting function 
and adjust the parameters of Rankboost algorithm according 
to 1) the absolute ranks generated by the adopted methods for 
a certain gene, and 2) the ranking relationship between all 
gene-pairs from each prioritization result to improve the result 
[5]. We use the prostate cancer as the training data and use 
ToppGene suite and ToppNet as the gene prioritization tools 
[8][16]. 

The results turned out to be better than merely adding a 
combinative weighting function. In the experiment, we found 
that about half of genes are in correlation with the disease in 
literature of the 13 training genes in each prioritization result. 
We also obtain better performance in terms of average 
precision, mean average precision and area under curve 
(AUC). It can verify the modified algorithm can really 
improve the performance which we predicted. 

II. METHODS 

A. Rankboost algorithm for a gene prioritization problem 

Rankboost proposed by Freund combines a set of weak 
ranking features Dç  [5]. The goal of the algorithm is to 
minimize the loss function. So Rankboost loss function is an 
upper bound [5]. To reduce the ranking loss, Rankboost 
iteratively selects a ranking feature from a pool of candidate 
features and calculating the combined weights until the loss 
falls within certain bound [5]. If a weak rank�Dç:T; ranges 
within the interval [0, 1], we can set its weight Ùç based on it 
performance rt as defined in step 6 in Fig.1. 
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?. Update D,+l(xa,Xi) ~ D,(xo,x1 )exp(a,(h,(x1 )-h,(xo))) 

z, 
Where Z, is a normalization factor (chosen so that D,+i becomes a 

probability distribution). 

8. Ou ut: H(x) ~ :27= a h (x) 

Figure!. The procedure ofRankboost algorithm 

In Fig.l, Dt is set by an ideal rank defined by the users. 

Because we don't have precise information about the ideal 
gene prioritization result for a specific biological problem, we 

use a weighting function instead ofan ideal pair-weight Dt(x0 , 

x1 ). Dt(x0, x1) means the weight assigned to the gene pair 

between the genes x 0 and x 1 which would be increased ifthe 
example pair does not belong to a correct class. Such a process 

is repeated T times. Finally it combines the scores and ignores 
the sign by T weak learners. Then it gets a final rank sorting by 

the sum of the combined scores. Due to the setting of x is 
either 0 or 1, the prioritization would result in the same score 

for many genes that are hardly to tell their ranking orders, so 
we change ht into a value in the interval of [O, l]. We integrate 

results of prioritization methods instead of data samples. We 
improve Rank.boost with a threshold value for each known 

gene by using the highest rank from all prioritization methods 
[5]. It cuts the computation beyond the threshold in pairwise 

computation and thus improve the computational efficiency. 

B. The weighting function 

The basic idea is to use a novel weighting function that 
reflects different partial contributions from various weak 

ranking learners instead of a conventional fixed pair-weight 
for running the boosting algorithm [2][19][20]. In this study, 

we proposed a Rank.boost learning algorithm with a 
weighting function, dubbed as "Rank.boost_ W". At first, we 

set three parameters s11 s2 and s3 as the following : 

• s11 s2 : The absolute ranks generated by the adopted 

methods for a certain gene. We set 1 ~ 0.1 according 
to gene rank 1 ~ 10000 for each interval 1000. 

• s3 : The consensus score between all gene-pair from 

each method. If the rank of gene x0 is higher than 

gene x1 or the rank of gene x1 is higher than gene x 0 

in all four tools we set into 1 and if the rank of gene x 0 

is higher than gene x1 or the rank of gene x1 is higher 

than gene x0 in only three tools we set into 0.5. If the 

rank of gene x 0 higher than gene x1 or the rank of 

gene x0 is higher than gene x1 in only two tools we 

set into 0. 

Then the simple weighting function is defined in Eq.(l): 

u(x0,x1) = (s1(x0) + s2(x1) + ls31)/3 (1) 

Then we add it to rt in Rank.boost [5] as in Eq. (2): 

rt = Lxo,x1 Dt (xo, X1) CTt (xo, X1) (ht (x1) - ht (x0)) (2) 

Because we only know the genes we left out are disease 
causing genes but we don't know the ranking order relation 

between these genes, the algorithm would produce many 

zeros in Dt(x0 ,x1). But if most Dt (x0 ,x1 ) are set to zero, the 
overall weighting function is hard to produce the discriminant 

effect. So we set Dt(x0 ,x1) are following: 

(3) 

We set the pair weight Dt(x0 ,x1) other than zero only when s3 

is not equal to zero. This kind of setting allows the algorithm 
to be merely affected by the weighting function of the pair. 
For example, Dt(x0 ,x1) will obtain some weight while the 
ranking score Dt(x0 ,x1) would not be affected if s3 > 0. 

C. Weighted combination of weak prioritization methods 

Finally the algorithm would find a, and ht that are combined 

to a final score for each gene by the voting result of the 

weighted sum of all a, and ht. Then we obtain the final 

ranking result by sorting the scores of all the genes. The 
overall process with its system architecture is shown in Fig.2 

The four prioritization methods adopted are denoted as 
ToppGene, ToppNetl, ToppNet2 and ToppNet3, respectively. 

Figure2. System Architecture 

III. RESULTS 

A. Selection of training genes, test genes and training 

genes and test genes 

We choose ToppGene suite as the learning tools [16]. The 

reason we choose it is because it contains both ToppGene 
(data and text mining gene prioritization methods) and 

ToppNet (K step Markov, Hits with Priors, PageRank with 
Priors: network-based gene prioritization methods) [8]. We 

combine these tools and use different type of methods. 

B. Selection of training genes and test genes 

The 19 genes selected as training examples are all known 
classical markers for prostate cancer in OMIM [ 11]. To avoid 

redundant data and ignore many genes that we have less 
information about their functions in NCBI [13], we used 

human protein-coding genes from HGNC [15]. 

C. Left-one-out 

We use left-one-out method to justify whether the disease 
causing genes can be ranked higher than the original ranking 

result as shown in Fig.3. The idea for the experiment method 
is like cross-validation but it's a little different. At first, we 

should obtain each ranking result by left-one-out method. It 
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means we move out genes from disease genes to human gene 

as candidate genes. Then we use the training genes and 

candidate genes to train the prioritization tool [9]. Then we 
recorded the ranking result for each method. If we assign 

equal weight to each prioritization method denoted as 
Equal_ W then we obtain a result as shown in the last column 

of Table I after combining the ranking results. The rank of 
each gene falls at the average position of all prioritization 

methods as we thought. The number in the brackets means the 
relative rank of the tool compared to the others and we sum 

the relative ranks of all genes into the SUMMARY field. 
After running our algorithm, we can get the result of Table II. 

For example, the Gene Symbol AR, it means we left AR gene 
from 13 training genes to the prioritization method. The rank 

is 33 when we run the ToppGene suite [16]. For the other 3 

tools, we can get the result each is 27, 15 and 35. The other 
genes are similarly processed. 

Although the results were mixed, more than half of the 
genes in Rankboost_ W outperformed those in ToppGene. 

And the ranks for all the genes are better than the result for 
ToppNet (K Step Markov), ToppNet (Hits with Priors) and 

ToppNet (Hits with Priors). We observed that although many 
genes which Rankboost_ W were not marked as number one 

performer with respect to other methods, it at least was 
marked as the second place with respect to the others. So we 

rank the ranking results for each prioritization method and 
account the sum of them in the summary field. Clearly, the 

result showed the Rankboost W is better than the others. 
In our conjecture, the most likely explanation for some 

genes that did not perform better than the rank generated by 
Toppgene is because the genes order at the top part in each 

prioritization method may be inconsistent. So it implies that 

the weighting function for s3 did not show its discriminant 

effect as expected. However, this result yielded limited 
information about our study. 

Figure3. LEFT-ONE-OUT EXPERIMENT METRO 

TABLE I. THE RESULT FOR LEFT-ONE-OUT (EQUAL_ W). 

The prioritization method 

Gene Page 
Symbol KStep Hits with Rank 

ToppGene 
Markov Priors with 

Equal_W 

Priors 

AR 33(4) 27(2) 15(1) 35(5) 28(3) 

ZFHX3 144(1) 3496(4) 4044(5) 3148(3) 2708(2) 

BRCA2 139(2) 165(3) 238(5) 136(1) 170( 4) 

CDHI 21(1) 402(4) 158(2) 424(5) 252(3) 

The prioritization method 

Gene Page 
Symbol KStep Hits with Rank 

ToppGene 
Markov Priors with 

Equal_W 

Priors 

KLF6 25(1) 1746( 4) 585(2) 1859(5) 1054(3) 

HIP! 263(1) 2199(3) 2470(5) 2309( 4) 1811(2) 

CD82 1332(2) 1549(4) 755(1) 1664(5) 1325(3) 

MSRI 52(1) 8181(5) 6219(3) 8079(4) 5633(2) 

MXII 42(1) 2272(4) 2439(5) 2015(3) 1692(2) 

PTEN 2(1) 871(5) 341(2) 733( 4) 487(3) 

MADILi 480(3) 400(2) 1181(5) 385(1) 612( 4) 

CHEK2 335( 4) 243(2) 532(5) 192(1) 326(3) 

ELAC2 834(1) 3768(3) 4039(5) 3890( 4) 3133(2) 

SUMMARY 23 45 46 45 36 

TABLE II. THE RESULT FOR LEFT-ONE-OUT (RANKBOOST _ W). 

The prioritization method 

Gene Page 

Symbol ToppGene 
KStep Hits with Rank Rankboost 

Markov Priors with w -
Priors 

AR 33(4) 27(3) 15(2) 35(5) 8(1) 

ZFHX3 144(2) 3496(4) 4044(5) 3148(3) 74(1) 

BRCA2 139(3) 165(4) 238(5) 136(2) 29(1) 

CDHI 21(1) 402( 4) 158(3) 424(5) 133(2) 

KLF6 25(1) 1746( 4) 585(3) 1859(5) 280(2) 

HIP! 263(1) 2199(3) 2470(5) 2309(4) 680(2) 

CD82 1332(3) 1549(4) 755(2) 1664(5) 413(1) 

MSRI 52(2) 8181(5) 6219(3) 8079(4) 45(1) 

MXII 42(1) 2272(4) 2439(5) 2015(3) 633(2) 

PTEN 2(1) 871(5) 341(3) 733( 4) 154(2) 

MADILi 480(4) 400(3) 1181(5) 385(2) 237(1) 

CHEK2 335( 4) 243(3) 532(5) 192(2) 89(1) 

ELAC2 834(1) 3768(3) 4039(5) 3890( 4) 1670(2) 

SUMMARY 28 49 51 48 19 

D. Performance measure 

We used all 13 genes as training genes and integrate the 

results from each prioritization method. We obtain the gene 
prioritization results after running each prioritization method. 

In the ROC curves indicates whether the 1265 prostate cancer 
genes we can found from PGDB (Human Prostate Gene 

Database) [12], NCBI (National Center for Biotechnology 
Information) [13]or KEGG (Kyoto Encyclopedia of Genes 

and Genomes) [ 14]. The different between these databases 
and OMIM is the genes relative to the disease are 

identification by biologist. According to in-vitro experiments 
but the other database are not. 

We obtain a better result in terms ofROC curves as shown 
in Fig.4 and AUC, mean average precision (MAP) as shown 

in Fig.5 respectively. The MAP is 0.2710 and AUC is 0.7267 

for Rankboost_ W respectively that show a significant gain 
over the other prioritization methods. The experiments have 

proved the performance as we expected that the ensemble 
approach can outperform the original methods by boosting 

[2][19]. 
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Figure4. ROC curves for each prioritization method. 

Figure5. The performance for AUC(dark) and MAP(light)     

IV. CONCLUSION 

We demonstrated that our proposed ranking method had 
been shown to outperform the previous methods on prostate 
cancer. The results indicated that integrating various 
strategies into gene prioritization by ensemble learning was 
beneficial to the ranking result. This study has taken a step in 
the direction of integrating each prioritization methods rather 
than the datasets. The pairwise computation of gene ranking 
takes in general O(n2) computational complexity. But we use 
proper setting of threshold for each known gene to reduce 
unnecessary computation. We ran the experiments on a PC 
laptop with 2.5 GHz under 64 bits Window 7 OS, the 
execution time for each known gene prioritization varies from 
31 seconds (the best case) to around 12 hours (the worst case). 
The experiments reported in the present paper have 
demonstrated that the new architecture can be practically 
implemented and provide adequate results.  The study 
suggests that ranking methods could be combined into better 
performance tools in identification of genes relevant to a 
particular disease. The weighting scheme can be generalized 
to take care of the condition when number of gene 
prioritization methods is more than four.  
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