
  

 

Figure 1: System controlled by an Actor-Critic algorithm 

 

Abstract—Artificial pancreas is in the forefront of research 

towards the automatic insulin infusion for patients with type 1 

diabetes. Due to the high inter- and intra-variability of the 

diabetic population, the need for personalized approaches has 

been raised. This study presents an adaptive, patient-specific 

control strategy for glucose regulation based on reinforcement 

learning and more specifically on the Actor-Critic (AC) 

learning approach. The control algorithm provides daily 

updates of the basal rate and insulin-to-carbohydrate (IC) ratio 

in order to optimize glucose regulation. A method for the 

automatic and personalized initialization of the control 

algorithm is designed based on the estimation of the transfer 

entropy (TE) between insulin and glucose signals. The 

algorithm has been evaluated in silico in adults, adolescents and 

children for 10 days. Three scenarios of initialization to i) zero 

values, ii) random values and iii) TE-based values have been 

comparatively assessed. The results have shown that when the 

TE-based initialization is used, the algorithm achieves faster 

learning with 98%, 90% and 73% in the A+B zones of the 

Control Variability Grid Analysis for adults, adolescents and 

children respectively after five days compared to 95%, 78%, 

41% for random initialization and 93%, 88%, 41% for zero 

initial values. Furthermore, in the case of children, the daily 

Low Blood Glucose Index reduces much faster when the TE-

based tuning is applied. The results imply that automatic and 

personalized tuning based on TE reduces the learning period 

and improves the overall performance of the AC algorithm. 

I. INTRODUCTION 

The simultaneous use of Continuous Glucose Monitors 
(CGMs) for measurement of glucose levels and pumps for 
the subcutaneous infusion of insulin is one of the 
fundamental therapeutic schemes for individuals suffering 
from Type 1 Diabetes (T1D) mellitus. A control algorithm 
able to estimate the appropriate per patient insulin dose to be 
infused by the pump based on glucose data provided by the 
CGM could lead to the development of an Artificial 
Pancreas (AP). Various approaches for such control 
algorithms have been proposed including Proportional-
Integral-Derivative (PID) control [1]-[4], Model Predictive 
Control (MPC) [4]-[10], run-to-run algorithms [11]-[14] and 
MD-Logic (MDL) control [15]-[16].  
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One of the major challenges in diabetes regulation is the 
high inter- and intra-population variability. For this purpose, 
personalized insulin treatment has been recently highlighted 
as a crucial goal towards efficient glucose control. This 
study discusses the use of a novel and online adaptive 
approach for glucose regulation based on the principles of 
reinforcement learning and optimal control for personalized 
diabetes treatment. In previous work of the Diabetes 
Technology Research Group [17], an algorithm based on the 
Actor-Critic (AC) learning has been designed and 
developed. The algorithm provides daily updates of the 
average basal rate (BR) and the insulin-to-carbohydrate (IC) 
ratio towards minimization of hyper-/hypoglycemia. As an 
extension to this study, a method for the automatic and 
personalized tuning of the AC based algorithm is proposed 
based on the estimation of information transfer (IT) between 
insulin and glucose signals.  

II. METHODS 

A. The AC algorithm 

AC belongs to the class of reinforcement learning (RL) 
algorithms. RL involves adaptive agents able to optimize 
their performance over time through interaction with the 
environment, which may include partially known or 
unknown dynamics [18]. AC consists of two complementary 
adaptive agents: the Critic and the Actor, with the former 
being responsible for the control policy evaluation and the 
latter for the control policy optimization. AC 
implementations may vary in the design of both the Actor 
and the Critic part. An extensive review can be found in [19]. 
A schematic view of a system controlled by an AC algorithm 
is shown in Figure 1.  

The system can be modeled as a Markov Decision 
Process (MDP) with finite state space   and action space  . 
The control policy is a deterministic or stochastic function 
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 ( |   ) which maps an action   to a state   based on a policy 

parameter vector     . A local cost  (   ) is associated with 
each state   and action  . Aim of the AC algorithm is to 
minimize the average expected cost per state defined as: 

  ̅( ) ∑  (   ) 
 
              (1) 

where   (   ) is the stationary probability associated with 
the Markov chain         dependent on  . The Critic 
estimates the corresponding Q-value function   (   ) which 
stands for the future expected cost when starting from state   
and action    and following control policy  ( | ). Based on 
the Q-value function, the Actor estimates the gradient 
   ̅( ) of the average expected cost with respect to  . The 
policy parameter vector   is then updated based on a gradient 
descent approach: 

    1   -     ̅( ) (2) 

where  
 
 a sequence of positive, non-decreasing step sizes 

and   denotes the iteration counter. 

B. Design of an AC-based algorithm for glucose regulation  

The algorithm implements a dual control policy for the 
optimization of the average daily BR and the IC ratio 
defined as: 

    
      

   ⁄   (3) 

where        is the insulin bolus dose and     is the amount 
of carbohydrates contained in a meal. The Critic estimates 
the Q-value function based on the Temporal Differences 
method [20] while the Actor updates the two control policies 
on a daily basis as follows: At the end of day  ,          , 
with   the total number of days of the trial, the daily sensor 
glucose profile is collected and two features related to 
hyperglycemia and hypoglycemia are computed as shown in 
(4) and (5). 

       (    -   0)  (4) 

        (  -     0)  (5) 

where     ,      are the measured minimum and maximum 
glucose concentration and    1 0     l,     0     l are 
the hyperglycemia and hypoglycemia bounds respectively. 
Define           the feature vector containing the hyper- 
and hypoglycemia features. The control policy for the 
average BR and the IC ratio is updated as: 

  (  |     
 )      -    

    -  (6) 

where           ,    is the control policy for day   and   
  

is the rate of change of    from day  -  to day   estimated as 
a linear combination of the features  : 

   
      

 
 (7) 

with  
 
 being the policy parameter vector of the respective 

control policy. The policy parameter vectors  
 
 are updated 

based on (2). A detailed description of the design and 
implementation of the AC-based algorithm for glucose 
regulation can be found in [17]. 

A major challenge during the design of adaptive 
algorithms, especially for applications where safety matters, 
is to keep the learning period as short as possible. 
Furthermore, even during learning, the necessary safety 
constraints should be guaranteed. One way to achieve this 
goal in designing an AC-based algorithm is through the 

appropriate initialization of the policy parameter vectors  
 
, 

which regulate the optimization of the control policy over 

time. The parameters  
 
 can be viewed intuitively as weights 

that define the percentage of change of the BR and IC ratio 
according to the daily hypoglycemia and hyperglycemia 
status. Setting these parameters away from their optimal 
values results in longer learning period, which can be crucial 
for the safety of the patient. One would expect that the 
percentage of change depends on the amount of IT from 
insulin to glucose in the sense that for high IT small 
adaptations of the insulin scheme may be sufficient whereas 
for low IT larger updates may be needed. Based on this 
reasoning, the IT from insulin to glucose has been estimated 
and used for the automatic, patient-specific initialization of 

 
 
.  

C. Automatic tuning of the AC-based algorithm  

Assessing causality and IT between signals has been 
extensively studied and various measures have been 
proposed. A comprehensive review can be found in [21]. 
Transfer entropy (TE) is a powerful measure of IT, mainly 
due to its nonlinear and directional structure, and has found 
promising application in biomedical signal analysis [22]-[24]. 
TE measures the information flow from a signal   (source) to 
a signal   (target) while it excludes redundant effects coming 
from other signals. Let              ,              , 

              be three observed random processes of length 
 . TE estimates the IT from process   to  , which can be also 
translated as the amount of knowledge we gain about   when 
we already know  , based on the following formula: 

      ∑  (        )   
 (        )

 (     )
  (8) 

where       denotes probability density function (pdf) and     
is the basis two logarithm. Division with the conditional 
probability of   to   excludes the redundant information 
coming from both   and   without excluding, though, the 
possible synergistic contribution of the two signals on   [23]. 
Main challenge in computing (8) is the estimation of the 
involved pdfs. Several approaches have been proposed for 
this purpose [21]. One of the most commonly used methods 
is the fixed data partitioning in which the time-series are 
partitioned into equi-sized bins and the pdfs are approximated 
as histograms [25].  

Expecting that high TE is related to smaller rates of 
change in the insulin scheme, the initial values of the policy 

parameter vectors  
 
 are set to be inversely proportional to 

the estimated TE per patient as: 

   
 
             (9) 

where   denotes a specific patient and   is a constant 

manually set as     1 with  1 for the elements of   
 
 related 

to hyperglycemia and -1 for the elements related to 
hypoglycemia. 
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                        (a)                                                                                 (b)                                                                                 (c) 

Figure 3:  Evolution of LBGI during the 10 days of the in silico trial for adults (a), adolescents (b) and children (c) 

and scenarios S1 (blue), S2 (green) and S3 (red) 

 

(a)                                                                              (b)                                                                               (c) 

Figure 2:  CVGA plots for all patients and the last five trial days when AC initialization is based on scenario (a) S1, (b) S2 and (c) S3 

 
 

III. RESULTS 

The AC-based algorithm has been in silico evaluated on 
28 virtual T1D patients (10 adults; 10adolescents; 8children) 
using the educational version of the FDA-accepted 
University of Virginia (UVa) T1D simulator. Two children 
have been excluded due to excessive glucose responses. The 
meal protocol included 3-4 daily meals of random CHO 
content and timing. A detailed description of the meal 
scenario is presented in [26]. In order to simulate the errors 
when real patients estimate the CHO content of their meal, a 
random meal uncertainty uniformly distributed between  
-50% and +50% has been introduced. The total trial duration 
was 10 days. The initial values of BR and IC ratio have been 
set equal to their optimized values as provided by the UVa 
simulator. For adults and adolescents, these values are close 
to the optimal ones, whereas in the case of children they are 
too high and, when applied in an open-loop scenario, they 
lead to excessive insulin infusion and frequent hypoglycemic 
events [17]. Consequently, the AC algorithm must perform 
significant updates of the BR and IC ratio in order to 
optimize glucose regulation, a fact that renders the duration 
of the learning period in children very challenging.  

Three different initialization scenarios of the policy 

parameter vectors  
 
 have been investigated:  

S1. The policy parameter vectors  
 
 are initialized to 

zero values. 

S2. The policy parameter vectors  
 
 are initialized to 

random values with magnitude ranging in (0, 1). 

 
 
 

S3. The policy parameter vectors  
 
 are initialized 

based on the estimated insulin-to-glucose transfer 
entropy per patient as in (9). 

The Control Variability Grid Analysis (CVGA) has been 
used for the evaluation of the AC algorithm, while the risk 
of hypoglycemia has been estimated based on the Low 
Blood Glucose Index (LBGI) [27]. 

TABLE I:  PERCENTAGES IN THE A+B ZONES OF THE CVGA FOR 

THE THREE AGE GROUPS AND SCENARIOS S1, S2, S3 

Patient age group S1 S2 S3 

adults 93.00 95.00 98.00 

adolescents 88.00 78.00 90.00 

children 41.00 41.00 73.00 

 
 
Figure 2 presents the CVGA plots for all patients and 

scenarios S1-S3. Table 1 presents the percentage of values 
within the A+B zones of the CVGA separately for each age 
group and the three scenarios. Setting the maximum 
acceptable duration of the learning period to five days, these 
results refer to the last five days of the trial. Finally, the 
daily evolution of the LBGI for the three groups when 
following scenarios S1-S3 is presented in Figure 3. This 
result refers to the total trial duration. 
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IV. DISCUSSION 

Figure 2 shows that, when the AC initialization is based 
on the patient-specific TE (scenario S3), the general 
performance of the algorithm after five days of learning is 
increased with 89% of the values in the A+B zones of the 
CVGA, compared to 78% for scenario S1 and 73% for S2. 
The same result can be observed from Table 1, where the 
values are separately presented for each patient group. 
Furthermore, from Table 1 it is clear that most of the 
hypoglycemic events present in Figure 2 belong to the age 
group of children. This is expected since, as mentioned 
earlier, the initial simulator-suggested values of BR and IC 
ratio are far from being optimal. The contribution of the TE-
based tuning especially in the case of children is thus critical 
as it significantly reduces the duration of the learning period 
and achieves increased overall performance. Figure 3 
supports this above remark presenting the evolution of the 
daily LBGI over the total trial duration. As expected, 
children start from much higher LBGI values compared to 
adults and adolescents. It can be further seen that the daily 
LBGI is kept to low and comparable values among the three 
scenarios for adults and adolescents, however, in the case of 
children, LBGI reduces much faster when the AC algorithm 
is initialized based on the TE compared to the zero or 
random initialization.  

V. CONCLUSION 

An AC-based control algorithm for glucose regulation in 
T1D has been designed and developed. In order to achieve 
faster and safer learning process, a novel approach for the 
automatic and patient-specific initialization of the algorithm, 
based on the estimation of the TE from insulin to glucose, 
has been proposed. Significant contribution of this method 
has been found compared to zero or random initialization 
especially in the case of children where the initial BR and IC 
ratio were far from their optimal values. Future work will 
include investigation of alternative ways for TE estimation 
and extensive evaluation of the AC control algorithm both in 
silico and in clinical practice. 
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