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Abstract—We present a novel biophotonic method and 

imaging modality for estimating and mapping neoplasia-specific 

functional and structural parameters of the cervical 

precancerous epithelium. Estimations were based on 

experimental data obtained from dynamic contrast-enhanced 

optical imaging of cervix, in vivo. We have developed a 

pharmacokinetic, in silico, model of the optical tracer’s uptake 

by the epithelium. We have identified that the kinetic 

parameters of the model correlate well with pathologic 

alterations in both metabolic and structural characteristics of 

the tissue, associated with the neoplasia progress. Global 

sensitivity analysis and global optimization methods were 

employed for identifying the key determinant set of biological 

parameters that dictate the model’s output.  Particularly, the 

shuffled complex evolution algorithm converged to a set of four 

parameters that can be estimated with an error of 7%, 

indicating a good accuracy and precision. These results are 

unique in the sense that for the first time functional and 

microstructural parameter maps can be estimated and 

displayed together, thus maximizing the diagnostic information. 

The quantity and the quality of this information are 

unattainable by other invasive and non invasive methods.    

I. INTRODUCTION 

Dynamic Contrast-Enhanced (DCE) imaging is a 
versatile technique for the spatio-temporal recording of 
biomarker-induced bio-events and processes in tissues, in 
vivo, non-invasively and in real time.  DCE imaging has been 
established as a non-surgical tool for the study of tissue 
perfusion kinetics, in vivo and has shown an impressive 
prognostic and predictive capacity in cancer radiology [1]. 
The concept of DCE is evolving rapidly and has been 
translated to several biomedical modalities including optical 
imaging. In fact, the in-vivo optical imaging aspect of DCE 
(DCE-OI) was developed in late nineties by C. Balas et al. 
[2], [3]. Particularly, a DCE optical imaging method and 
platform was developed for measuring and mapping the 
evanescent backscattering signals, generated during the 
biomarker-tissue interaction with epithelial neoplasias of the 
cervix, the larynx and the skin [4]. The method employs the 

 
* This work was supported in part by: 1) the European Union (European 

Social Fund) and Greek National funds through the Operational Program 

“Education and Lifelong Learning” of the National Strategic Reference 

FrameworkResearch Funding Program: Heraclitus IIInvesting in 

knowledge society through the European Social Fund and 2) the NSRF 

“cooperation” action, program “OncoSeed Diagnostics: Biology of 

Circulating Tumour Cells, Distant Metastasis & Development of Liquid 

Biopsy Methods” 

C. Balas, G. Papoutsoglou and T. M. Giakoumakis are with the 

Department of Electronic and Computer Engineering, Technical University 

of Crete, Chania 73100, Greece (corresponding author to provide phone: 

+302821037212; fax: +302821037542; e-mail: balas@electronics.tuc.gr). 

acetic acid (AA) dilute solution 3-5% as a biomarker. In two 
international clinical trials, enrolling hundreds of patients 
DCE-OI was proved to be very efficient, demonstrating an 
improvement of more than 63% in diagnostic sensitivity over 
Papanicolaou test and colposcopy [5].  

Due to the fact that DCE-OI captures the kinetics of 
diffusible, high-affinity labeled tracers in tissues, it, in 
principle, allows for the model-based estimation of 
biological parameters that are determining the features of the 
experimental data. In addition, since DCE-OI measures these 
data in every spatial location, it enables the mapping of the 
estimated parameters. To this end, we have previously 
reported the development of a compartmental model, which 
simulates the metabolic pathways that are followed by the 
biomarker in the epithelial tissue [6]. The biomarker uptake 
kinetics determine the dynamics of the biological target’s 
optical activation and establish the link between optical and 
biological parameters and responses. Then, fitting the 
developed pharmacokinetic model to the experimental data, 
a set of neoplasia-related biological parameters can be 
estimated, comprising the solution of the inverse problem. 
Towards this direction, we have performed global sensitivity 
analysis for ranking the importance and relative estimability 
of the input parameters [7]. The analysis concluded that four 
out of nine parameters are fulfilling these criteria and can 
therefore be estimated using the experimental dynamic 
optical data as input. These parameters were found to be: the 
number of neoplastic layers, the size of the extracellular 
space, the extracellular pH and the tissue porosity. 

In this paper we report a method based on global 
optimization for verifying whether the solution of the inverse 
problem (a certain set of biological parameter values) is 
substantially unique. Finally, we for the first time present 
results from the pixel-by-pixel estimation of these parameters 
from DCE-OI of cervical tissue, in vivo. Four maps have 
been calculated, having as pixel values the estimated 
parameter values. The latter are represented in the form of a 
pseudocolor map which is overlaid onto the clinical color 
image of the tissue. This enables the direct visualization of 
tissue locations with normal or abnormal parameter values.  

II. MATERIALS AND METHODS 

A. Bio-Optical Background 

Chemical biomarkers have been extensively used for 
visualizing and monitoring several bio-processes at pre-
cancer and cancer stages in live cells or tissues. Optical 
activation of these substances depends primarily on their 
predefined affinity to cellular components. Still, their uptake 
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depends largely on the transport phenomena and pathways 
that they follow in order to reach and optically activate the 
target. It is therefore possible to assess valuable information 
regarding the functional and the structural characteristics of 
abnormal sites, by studying and simulating, in silico, the 
kinetics of these biomarkers. Towards this end, we have 
identified and modeled the transport phenomena in the case 
of the cervical precancerous epithelium using AA as 
biomarker. Particularly, the AA molecules, after topical 
application, reach the extracellular space (ES) of the 
neoplastic portion of the epithelium, where they remain 
considerably unionized due to the high extracellular acidity. 
As such, they penetrate passively through the membranes of 
the neoplastic cells with high selectivity. Due to the almost 
neutral intracellular space (IS), the intruded AA molecules 
are disassociated into acetate (Ac

-
) and hydrogen (H

+
) ions. 

The latter, stimulate conformational changes in the nuclear 
proteins. This, in turn, provokes local changes to the index of 
refraction and determines the macroscopically observed 
dynamic scattering characteristics. Next, and because the 
cervical epithelium is stratified, these processes are repeated 
in the underlying neoplastic epithelial layers. Finally, the 
tissue restores its original light scattering characteristics by 
the time the biomarker has been consumed or drained away. 

B. Model Formulation and Calibration 

Structurally, the cervical epithelium is a natural 
assemblage of well-differentiated cells which at precancer 
stages disorganize. Taking normal and pathologic epithelium 
architecture into the account, we have developed a 
pharmacokinetic model that encapsulates the abnormal part 
of the cervical epithelium and partitions it into a stack of 
functionally and structurally identical cells. Because during 
the development of neoplasia the number of abnormal cell 
layers constantly increases, this tissue partitioning has been 
designed to be flexible in size. This adaptable layered 
structure is delimited from its upper borders by a reservoir 
layer that acts as a repository that supplies the biomarker. 
Each of these cell layers is modeled with two compartments 
of interaction: the intracellular space (IS) and the 
extracellular space (ES) compartments. AA diffuses 
passively from the ES to the IS through the cell’s membrane 
and from the upper to the lower layer(s) of the abnormal 
epithelium through the extracellular, porous junctions. Both 
transmembrane and paracellular passive fluxes are driven by 
concentration and potential gradients, obeying to the Fick’s 
law and Goldman-Hodgkin-Katz flux constant field equation. 
The model also embodies two dynamic intrinsic processes, 
the AA ion buffering, occurring in both IS and ES spaces, 
and the active transmembrane pumping processes, which 
contribute in restoring the original intracellular pH (pHIS) 
though the extrusion of H

+
 ions from the IS to the ES.  For 

more details the reader is referred to [6], [7].  

Altogether, the developed model is a deterministic, non-
linear, algorithm that includes a scalable system of coupled 
differential equations. The differential equation system that 
expresses material exchange between the compartments of a 
single neoplastic layer is the following: 
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where the brackets ([…]) and the dot (∙) denote the 
concentration time derivative, TA refers to the total AA in 
both ionized and unionized form, i is the i

th
 neoplastic layer 

(i=1,2,...,N), a and b are the linear dimensions of the IS and 
of the ES, where cubic and rectangular compartment 
geometries have been assumed, respectively, Jm describes the 
passive transmembrane flux between the ES and IS, β is the 
buffering power, q and w account for the AA's dynamic 
ionization constants, including its self-burning effect, ε refers 
to the alterations in the porosity of the tissue during 
neoplasia, Jp is the active proton extrusion flux that is 
assumed to be a piecewise linear function of pHIS and pHES 
and JT is the total passive paracellular flux that corresponds 
to the difference between the incoming and outgoing 
molecular paracellular fluxes between consecutive layers 
through the extracellular porous junctions. It should be noted 
here that for the reservoir layer equations (3) and (4) are 
abolished and for the last layer the outgoing paracellular flux 
is replaced by the KVC term, where KV is the permeability at 
the boundary between the epithelium and the stroma and C 
corresponds to the concentration of either AA, Ac

-
 or H

+
. 

The value ranges of the set of neoplasia related biological 
parameters as they have been measured experimentally are as 
follows: the number of dysplastic layers, N, are in the range 
of 1-10; the IS and the ES linear dimensions a and b, are in 
the range of 10-20μm and 0.2-0.8μm, respectively; the IS 
and the ES buffering efficiency βIS, βES, are in the range of -
10 to -50mM and -10 to -30mM, respectively;  the pHIS, 
pHES values vary between 7-7.4 and 6-7, respectively; the ε 
parameter is in the range of 1-36 and the KV between 10

-6
 

and 10
-7

 m/s [8-13]. These value ranges comprise the input 
of the model when fitting of experimental data is intended. A 
certain combination of parameter values can best-fit the 
experimental data and therefore be considered, under certain 
circumstances, as the output of the inverse modeling. 

Towards verifying the uniqueness of the inverse 
problem’s solution we have performed consecutively three in 
silico analyses; namely, global sensitivity analysis, parameter 
identifiability analysis and parameter estimability analysis 
[7]. On the basis of theses analyses, we were able to decide 
which of the pertinent model parameters can potentially be 
estimated from available input/output data and which are 
impossible to assess. Specifically, we have identified a set of 
parameters that fulfill the following criteria: a) they are the 
key determinants of the line-shape of the model’s output that 
fits the experimental dynamic optical data and b) they 
display no collinearities and minimum interdependency with 
each other. The initial nine input parameters of the model 
have been reduced to four by discarding parameter KV as 
displaying null sensitivity function and the parameters βIS, 

3480



  

TABLE I.  THE PRECISION OF THE SCE ALGORITHM  

Parameter  
NRMSD  

CIN I CIN II CIN III Median 

N  9% 9% 4% 9% 

b 16% 3% 5% 5% 

pH
ES

 2% 8% 5% 5% 

ε  13% 7% 7% 7% 

 

 

βES, and pHIS, as not fulfilling the combined non-unity 
correlation coefficient, displaying also low estimability ratio 
and sensitivity indices. Additionally, the IS linear dimension 
parameter (a) did not fulfill the collinearity criterion. On the 
basis of both sensitivity and estimability analyses we have 
identified that the key determinants (in descending ranking 
order) are: the number of neoplastic layers (N), the size of 
the ES (b), the extracellular pH (pHES) and the tissue’s 
porosity (ε). 

C. Solving the Inverse Problem for Parameter Estimation  

Even though the implementation of these three analyses 
enhances the well-posedness of our parameter estimation 
problem, it does not prove a deterministic relation between 
the solution and the parameter values. We have identified 
global optimization methods as the most efficient tool for 
verifying whether our method has the capacity of providing a 
substantially unique parameter value combination, when a 
certain experimental curve is fitted [14]. The first step of the 
analysis involved the generation of “pseudoexperimental” 
(PEX) data by collecting the model responses to a known 
range of values of all four parameters. Next, the PEX curves 
were fitted until an acceptable level of goodness of fit is 
reached. At that point a new set of parameters is collected 
and the procedure is repeated 54 times. Finally, the accuracy 
and reproducibility of model predicted parameter values was 
accessed by comparing them with the known PEX values. 
For implementing this approach we have preliminary 
employed and tested a series of global estimation techniques 
that randomly search to converge to the global extrema under 
a recursive, evolutionary strategy [14]. These methods 
benefit from the fact that they are easy to implement and not 
critically dependent on a priori information about the 
objective function. Under this framework, constrained, direct 
search, point-to-point and population based, global 
optimization algorithms such as the simulated annealing, 
controlled random search, shuffled complex evolution, 
genetic algorithm and differential evolution, have been 
comparatively evaluated with the purpose of identifying the 
best performing algorithm in estimating parameter values in 
the vicinity of the PEX curve input values, with adequate 
reproducibility. The normalized root mean squared deviation 
(NRMSD) was used as convergence/reproducibility metric.  

D. Experimental Procedure 

Experiment data were obtained from women referred to 
colposcopy after having an abnormal Pap-test. The DCE-OI 
head was adapted to a colposcope and a set of 30 images 
were collected from each case before and after applying AA. 
The reader can find more details on the image acquisition 
procedure in [15]. Diffuse reflectance (DR) vs. time curves 
were calculated for every image pixel, with reflectance 
values measured at 540 nm (center wavelength), as in this 
spectral band the signal-to-noise-ratio is maximized. We 
have selected a case with (biopsy confirmed) high grade 
cervical neoplasia. From the acquired, in time sequence, 
image set we have derived 2 million of DR vs. time curves, 
each corresponding to a single pixel. These curves are one-
by-one best fitted and the values of the four parameters are 
estimated. These four values comprise the pixel values of 

four maps at the same spatial coordinates. The parameter 
value-ranges are represented with the aid of a pseudocolor 
scale and the resulting four pseudocolor maps are overlaid 
onto the colposcopic image of the tissue. This will, for the 
first time allow, the clinicians to observe and to localize 
microstructural and functional alterations, during their 
routine clinical (macroscopic) examination of the cervix. 

III. RESULTS AND DISCUSSION 

We have found that the best performing algorithm is the 
shuffled complex evolution (SCE), which converges to 
solutions of the least NRMSD. The analysis of the factors 
that may explain the observed differences in the 
performances between different algorithms goes beyond the 
scope of this report. For the purposes of current analysis we 
adopt the SCE algorithm, which gave the results depicted in 
table I. The results refer to a set of 9 repetitive parameter 
estimations performed for each PEX signal. It is clear that 
the chances to convergence to a unique set of parameter 
values are considerably high, while they vary slightly over 
the range of the CIN grades. On average, the deviation of the 
predicted values from the reference ones has been found to 
be 7% suggesting a high degree of convergence of an almost 
unique set of parameters’ for a given experimental curve. 
This finding advocates that the estimation of functional and 
structural parameters can be performed with adequate 
precision and accuracy.  

On the basis on this finding, we claim that the biological 
parameters that can be estimated through this method from 
the DCE-OI and the derived DR vs. time curves are realistic 
and reflect the actual status of the structure and functionality 
of the tissue. Figure 1(a) shows a DCE-OI image 
corresponding to a high-grade cervical epithelium (CIN 
II/III). The circles on this image indicate points from which 
the biopsy samples were obtained. Figures 1(b)-(e) illustrate 
the four maps expressing the values ranges and the spatial 
distribution of the four parameters, calculated for every 
image pixel.  More specifically, fig. 1(b) depicts the spatial 
distribution of the structural parameter, which expresses the 
number of neoplastic epithelial layers. As discussed 
previously, it has been established that the number of 
neoplastic layers are increasing with the neoplasia growth 
[8]. By comparing figs. 1(a) and 1(b) it becomes clear that 
the layer number parameter takes the maximum values (8-10) 
at the points where the biopsies had been taken, and 
histology results suggested high occupation of the epithelium 
by neoplastic layers. This can be reasonably considered as a 
confirmation of the validity of our results. Fig. 1(c) depicts 
the spatial distribution of another key structural parameter, 
which is also assessed histologically as having high 
predictive value. Parameter (b) expresses the size of the 
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Figure 1.  (a) The image of a high risk cervical epithelium. The 

circles denote the areas from where biopsies have been collected. (b)-

(e) Pseudocolor maps of N, b, pHES and ε neoplasia-related 

parameters respectivelly, as they have been estimated by our model.  

Color-coding of the maps corespond to various parameter values. 

extracellular space, which is known to increase with the 
neoplasia progress [8]. As it can be seen in the map of 
parameter (b), large extracellular spaces exist in the vicinity 
of the biopsy confirmed high grade points. Additionally, high 
b-parameter areas are co-localized with the high N-parameter 
areas, something that can be considered as a verification of 
the consistency of our findings with the actual biology of 
neoplasia growth. As it can be seen in fig 1b the number of 
dysplastic layers is fully consistent with the histological 
classification and are laying within the nominal value-ranges 
found in the literature. It is therefore evident that the method 
presented in this paper may comprise a non-invasive a novel 
optical biopsy method. Principally, the fact that our approach 
is based on live tissue imaging makes the assessment of 
functional characteristics possible, in contrast to histology, 
which uses dead tissue samples.  

Referring now to the functional parameters, our 
consistency claim applies also to the findings illustrated in 
fig. 1(d) where areas with high, close to normal, pHES values 
are color-coded with red and areas with low pHES, values 
with blue. It is distinctly shown that lower pHES are co-
located with high areas with high N and b, depicting the 
lower acidity of the extracellular space, which is in full 
agreement with the finding of other studies [11-13].  Finally, 
fig. 1(e) shows the mapping of the permittivity of the tissue 
to the biomarker. In general, CIN carcinogenesis disrupts the 
state of the tissue adhesion structures, which has been 
associated with increased tissue permeability [16]. This leads 
to the loosening of these particular junctions, transforming 
the tissue from tight to leaky increasing the possibility of 
metastasis. Particularly, according to the “acid-mediated 
tumor invasion model”, the H

+ 
flow to peritumoral normal 

tissue provokes normal cell necrosis or apoptosis and 
extracellular matrix degradation [11]. Because, the tumor 
cells are capable of resisting to the toxicity induced from this 
flow, they are able to invade the damaged normal tissue. This 
allows them to spread, and eventually form invasive cancers. 
The aforementioned finding suggests strongly that our 
method can provide a better insight to the neoplasia growth 
and tumor metastasis. 

IV. CONCLUSION 

This paper describes a novel biophotonic method and 

imaging modality for estimating and mapping a set of 

neoplasia-related biological parameters, from dynamic 

optical data (DCE-OI), in vivo. Global optimization showed 

that the estimations of our method are of adequate accuracy 

and precision. It was also shown that the estimated, in two 

millions of pixels, values of the four parameters are quite 

consistent with information provided in the literature. Our 

findings suggest strongly that our method can improve our 

understanding of the neoplasia development mechanisms and 

of tumor growth and metastasis physiology. Corollary, it may 

become a valuable diagnostic tool that will also facilitate the 

development and evaluation of new cancer therapies. 
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