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Abstract— With the availability of the huge medical knowl-
edge data on the Internet such as the human disease network,
protein-protein interaction (PPI) network, and phenotype-
gene, gene-disease bipartite networks, it becomes practical to
help doctors by suggesting plausible hereditary diseases for a set
of clinical phenotypes. However, identifying candidate diseases
that best explain a set of clinical phenotypes by considering
various heterogeneous networks is still a challenging task.
In this paper, we propose a new method for estimating a
ranked list of plausible diseases by associating phenotype-
gene with gene-disease bipartite networks. Our approach is
to count the frequency of all the paths from a phenotype to
a disease through their associated causative genes, and link
the phenotype to the disease with path frequency in a new
phenotype-disease bipartite (PDB) network. After that, we
generate the candidate weights for the edges of phenotypes with
diseases in PDB network. We evaluate our proposed method in
terms of Normalized Discounted Cumulative Gain (NDCG), and
demonstrate that we outperform the previously known disease
ranking method called Phenomizer.

I. INTRODUCTION

One of the formidable tasks in bioinformatics research is
to understand the underlying mechanisms of human disease.
There are some genes that are responsible for causing
human diseases, called disease causative genes or causative
genes [1]. Phenotypes, the observable characteristics (traits)
of an organism, are believed to be determined by genetic
materials (DNAs) under environmental influences. In this
regard, phenotypes have associations with genes [2] and,
in turn, causative genes have associations with human dis-
eases [3] as well. Therefore, there might be paths from a phe-
notype to human hereditary diseases through causative genes
with weighting factors along with the edges. Human diseases
might be developed through the phenotypical changes due
to some causative genes [4,5], and physicians diagnose
diseases utilizing their human knowledge of varieties of
cases. Wrong selection of clinical features or medical cases
may act human severely. Consequently, making the correct
diagnosis is questionably the most significant role of the
physician. However, disease retrieval system may support
physician in diagnosis or treatment practice. In a complex
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or even in an unknown case of diseases, physicians may get
assistance to take decision quickly and efficiently. Therefore,
disease retrieval from a set of clinical features is an important
and supportive tool for physicians.

The rest of the paper is organized as follows: Section
2 describes the state of the art while general terminology
is articulated in Section 3. We introduce our approach in
Section 4. Section 5 includes evaluation and experiment.
Concluding remarks and some future directions of our work
is described in Section 6.

II. STATE OF THE ART

The enormous cost of health care is quickly becoming
uncontrolled. Over the last decade, there are a number of
systems to address the crisis. Moreover, most of the systems
are designed to make a prediction about a specific disease
or a class of diseases.

Phenomizer is a web-based system that produces a ranked
list of hereditary diseases for a set of clinical features [6].
This system only measures the structural similarity of pheno-
types between query and diseases using Human-Phenotype-
Ontology(HPO) [7] by developing a statistical model to
assign p values to the resulting similarity scores, which can
be used to rank the candidate diseases. However, without
considering genetic loci, phenotypic similarity does not al-
way confirm the relevant plausible diseases.

Another system known as CARE, which uses collaborative
filtering methods to predict each patient’s disease risks
based only on their own medical history and that of similar
patient’s [8]. Moreover, there are some causative genes that
can active in the organism in different age of onset.

In the postgenomic era, it is widely established in bioinfor-
matics and system biology to represent associations between
biomedical entities as networks and to analyze their topology
to get a global understanding of underlying relationships [4].
By means of functional annotation analysis of gene-disease
association database, it is indicated a shared genetic origin of
human diseases and shown that for most diseases, including
mendelian, complex and environmental diseases, functional
modules exist [9]. Another study to identify gene-phenotype
relationship instead of finding the gene-disease relationship
directly states that similar phenotypes are caused by func-
tionally related genes [10].

III. GENERAL TERMINOLOGY

This section introduces some basic definitions of terminol-
ogy to familiarize the readers with the notions used through-
out the paper. It includes the definitions of phenotype-gene,
and gene-disease bipartite networks.
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Fig. 1. Phenotype to Gene Bipartite Network with unit Edge Weight

A. Phenotype-Gene bipartite network

The correspondence between gene and phenotype is a
many-to-many relation in which any given gene corresponds
to multiple different phenotypes and there are different genes
corresponding to a given phenotype [11]. For example,
Abnormality of the ear (HP:0000598), a phenotype which
is associated with a set of genes such as FGFR3 (2261),
COL2A1 (1280), and LMNA (4000). FGFR3 (2261), for ex-
ample, is a gene which is associated with a set of phenotypes
including Abnormality of the immune system (HP:0002715),
Abnormality of the oral cavity (HP:0000163), and Abnor-
mality of the lower limb (HP:0002814). The associations of
phenotypes with genes are represented as a bipartite network
(Phenotype-Gene Bipartite (PGB) network), all the edges
between phenotypes and genes are initialized to one as shown
in Fig. 1. All the genes in bold letters in Fig. 1 are known
as disease causative genes.

B. Gene-Disease bipartite network

The gene-disease network consists of two types of nodes
(gene and disease) [4]. Gene and disease nodes are con-
nected through edges if the corresponding gene-disease
association is covered in the gene-disease database. A
set of disease causative genes FGFR3 (2261), COL2A1
(1280), FLNA (2316), and HTR2A (3356) are asso-
ciated with a set of human diseases Bladder Cancer
(OMIM:109800), Colon Cancer (OMIM:114500), Wagner
syndrome (143200), SCHIZOPHRENIA (OMIM:181500),
and Heterotopia (OMIM:300049). The associations are de-
picted in Fig. 2 as a bipartite network (Gene-Disease Bipar-
tite (GDB) network).

IV. OUR APPROACH

In our methodology, firstly, the gene-disease bipartite
(GDB) network is extended by using PPI network and
known gene-disease associations. Secondly, all hidden paths
of phenotypes with diseases are explored by associating
phenotype-gene (PGB) with extended gene-disease bipar-
tite (EGDB) networks considering the common causative
genes in both networks. Finally, the phenotype-disease
associations are represented as a bipartite (Phenotype-
Disease Bipartite (PDB)) network, and is weighted using
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Fig. 2. Gene to Disease Bipartite Network with unit Edge Weight

our proposed model Bidirectional Phenotype-disease Weight
(BPW) method [12]. Using the weighted PDB network,
we produce a ranked list of candidate diseases for a set of
clinical phenotypes. For evaluating our system, we make a set
of queries from some specific branch of Human-Phenotype-
Ontology (HPO).

A. Extension of GDB network

There is more and more evidence that most human dis-
eases cannot be attributed to single gene but arise due to
complex interactions between multiple genetic variants and
environmental risk factors [5]. Since disease causative genes
which are more likely to interact with each other through
their protein products, exploiting protein-protein interactions
(PPI) can greatly increase the likelihood of finding posi-
tional candidate disease genes [10]. We may consider the
first-neighboring genes of causative genes in PPI network
as susceptible to diseases. Through this idea, we explore
more candidate causative genes, and ultimately extend GDB
network. The complete procedure is outlined in Algorithm 1.
It requires three basic operations that are applied to PPI,
GDB, and EGDB networks. The first operation called get-
CausativeGene returns the set of causative genes (CG) of a
disease d from GDB network. The second operation denoted
getFirstNeighbor returns the set of first-neighboring genes
(NG) of a causative gene cg ∈ CG from PPI network.
Finally, third operation updates the EGDB by adding new
edge between each candidate gene ng ∈ NG and disease d
along with the existing edges of GDB network.

B. Association of Phenotype with Disease

It is strongly believed that a phenotype is associated with
a set of genes, and in turn, a causative gene is also associated
with a set of diseases. Therefore, there might be a path from
a phenotype to a disease through a gene. We link a phenotype
with a disease by searching all paths from a phenotype to
one or more genes, and in turn, genes to a disease. We
represent the associations of phenotypes with diseases as a
bipartite (PDB) network where each edge is labelled with a
frequency. The frequency of an edge is the total number of
distinct paths from a phenotype to a disease through one or
more genes.
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Algorithm 1: ExtendCausativeGene(PPI, GDB)
A naı̈ve algorithm for exploring disease causative genes

Input: PPI and GDB Network
Output: EGDB Network

1 D ←getAllDisease(GDB)
2 EGDB ← ∅
3 for disease di ∈ D do
4 CG ← getCausativeGene(GDB, di)
5 for causative gene cgj ∈ CG do
6 EGDB ← EGDB ∪ {cgj ,di}
7 NG ← getFirstNeighbor(PPI, cgj)
8 for gene ngk ∈ NG do
9 EGDB ← EGDB ∪ {ngk,di}

10 return EGDB

C. Candidate Weight Generation

In this section, we elucidate the ways of weighting PDB
network. The PDB := (P+D, E) is a bipartite network where
P is the set of phenotypes, D is the set of diseases, p1 ∈
P , d1 ∈ D, and (p1, d1) ∈ E is an edge in PDB. The
edge weight is measured by applying BM25 [13], and our
proposed BPW individually.

1) BM25 Weight: The BM25 weight of a phenotype pi on
a disease dj is calculated using the following equation:

weight(pi, dj) =
T Fpi,dj

· (k1 + 1)

k1 · ((1− b) + (b · ld
avglD

)) + T Fpi,dj

×

log
|D|−|{d ∈ D|pi ∈ d}|+0.5

|{d ∈ D|pi ∈ d}|+0.5

(1)

where T Fpi,dj
is the pi’s term frequency in the disease

dj , ld is the length of disease d i.e. the number of phenotypes
occurring in it, avglD is the average disease length, |{d ∈
D|pi ∈ d}| is the total number of diseases where the
phenotype pi occurs.

In this model, k1 and b are free parameters, where we
deduce this parameters through empirical evaluation. For this
empirical evaluation, we make 81 combinations of values
of k1 and b, whereas k1 = {1.2, 1.3, 1.4, ..., 2.0} and b =
{0.50, 0.55, 0.60, ..., 0.90}. For each pair of k1 and b, we
produce the average F-measure [14]. The global peak of the
F-measure curve indicates the optimized value of k1 and b,
which are found to be k1 = 1.85 and b = 0.82. This pair of
optimized value of k1 and b is utilized in equation 1.

2) BPW Weight: The weight using our proposed method
BPW of a phenotype pi on a disease dj is calculated as
follows:

(2)
weight(pi, dj) = (

avglD
ldj

· |pi ∈ dj |
Σx|px ∈ dj |

) +

(
avglP
lpi

· |pi ∈ dj |
Σy|(pi ∈ dy) : dy ∈ D|

)

where ldj
is the length of disease dj , avglD is the

average disease length, |pi ∈ dj | is the number of times
the phenotype pi occurs in the disease dj , Σx|px ∈ dj | is
the number of times of all the phenotypes px occurs in
the disease dj , lpi

is the length of phenotype pi i.e. the
number of diseases where the phenotype pi appears, avglP is
the average phenotype length, Σy|(pi ∈ dy) : dy ∈ D| is the
count of all the diseases dy where the phenotype pi occurs.

The BPW weight is the sum of the importance weight of
phenotype pi for disease dj , and disease dj for phenotype
pi. This is bidirectional importance from both phenotype and
disease respectively. The procedure to generate the candidate
weight between every edge of the PDB network is outlined
in Algorithm 2. It requires three basic operations. The first
operation is getFirstNeighbor that returns a list of diseases
which are associated with a phenotype. The second operation
is to apply a specific weight equation i.e. equation (1) or
(2), between a phenotype with its first-neighboring disease
to estimate the candidate weight. Third operation updates the
weighted phenotype-disease bipartite (WPDB) network by
adding the weighted edge.

Algorithm 2: CandidateWeightGeneration(PDB, Weight
Equations)
An algorithm for generating edge weight of the
phenotype-disease bipartite (PDB) network

Input: PDB) Network, Weight Equations
Output: WPDB Network

1 WPDB ← empty
2 for phenotype pi ∈ PDB do
3 D ← getFirstNeighbor(PDB,pi)
4 for disease dj ∈ D do
5 weight← Apply a specific weight equation

between pi and dj
6 WPDB ←WPDB ∪ {(pi, dj), weight}

7 return WPDB

D. Probable Disease Retrieval System
In this section, we describe the method of retrieving ranked

list of candidate diseases for a set of clinical phenotypes. Our
system uses the WPDB network for predicting plausible
diseases for a given set of phenotypes. Let us assume that a
given phenotype set is Q = {p1, p2, ..., pk}. The specificity
of a disease, d to the given phenotypes set, Q is defined as
follows:

Φd =

|Q|∑
pi=1

w(pi, d) if(pi, d) ∈ WPDB (3)

Using equation 3, we may have a set of diseases with
their weights. The cumulative weight is calculated for every
distinct disease. Then, the diseases are sorted in descending
order according to their cumulative weights. Now, physician
can observe the top-5 or top-10 diseases in the ranked list to
diagnose more precisely with the help of our assistive disease
retrieval system.
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V. EXPERIMENTS AND EVALUATION

We selected PGB, HPO, and disease-phenotype annota-
tion from [7] website, and PPI, GDB from [4] website.
In PGB network, there are 6,327 phenotypes and 1,807
genes. GDB network consists of 1,271 causative genes and
1,540 diseases, PPI includes 951 genes. After applying
Algorithm 1, we found 1,446 causative genes in the EGDB
network.

We choose to evaluate using Normalized Discounted Cu-
mulative Gain (NDCG@k) [14], which credits system with
high precision at top-k ranks. Let g1, g2, · · · , gk be the gain
values associated with the top-k diseases, where gi is the gain
value for relevance grade ξ at rank i. Then, NDCG value is
defined as follows:

NDCGk = DCGk

IDCGk
where DCGk =

∑k
i=1

2gi−1
lg(i+1)

and IDCGk denotes the DCGk value for an ideal ranked
list. For estimating NDCG@22, we make a set of 42 queries
Q, which are chosen from some specific branch of HPO
e.g. “Abnormality of abdomen, and Abnormality of immune
system”. Then, a ranked list of candidate diseases is retrieved
for every query based on BM25, and BPW individually.
Every disease in the ranked list is elucidated for its relevance
to the query phenotypes. Relevance grade is measured on a
5-level scale i.e irrelevant, marginally relevant, partially rel-
evant, fairly relevant, and highly relevant using the Jaccard’s
Index of query and disease annotated phenotypes.

NDCG@22 is further measured for the ranked list of dis-
eases, which is produced by Phenomizer. Phenomizer does
not produce any NDCG measure, however, we use the same
set of queries Q as BM25 and BPW . The comparison result
of our system with Phenomizer and BM25 for NDCG@22
is depicted in Fig. 3. It is clearly turned out that our system
outperforms Phenomizer, and is to some extent better than
BM25. We does not compare our system with other state of
the art works e.g. POSSUM, The London Dysmorphology
Database (LDDB), as well as the search routine available
with the OMIM, and Orphanet. The reason is that, these
systems do not provide explicit rankings or measures of
plausibility for the potential long lists of candidate diseases.

VI. CONCLUSION AND FUTURE DIRECTION

In this paper, we proposed a new method for estimating a
ranked list of plausible diseases. Our approach was to explore
all the paths from a phenotype to a disease through causative
genes, and link the phenotype to the disease with path
frequency. After that, we generated the candidate weights for
the edges of phenotypes with diseases in PDB network. We
experimented with and evaluated our system by measuring
NDCG@22. It is clearly shown that we outperform the pre-
viously known disease ranking method called Phenomizer.

One of our future targets is to extend gene-disease bipartite
network by exploring more causative genes using PPI, and
gene expression. Along with genetic linkage, we will further
implement the structural similarity of disease annotated phe-
notypes and query phenotypes using HPO for refining the
ranked list of candidate diseases for differential diagnosis.
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