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Abstract— Migratory cells, for example human retinal ep-
ithelial (RPE) cells, exhibit highly variable morphology. This
makes it difficult to use traditional methods, such as the
landmark based Procrustes analysis or feature based analysis,
to quantitatively represent their shapes. We propose a novel
framework to generate a low-dimensional representation of
highly variable cell shapes. The framework lends itself readily
to efficient exploratory analysis of a given cell shape dataset
in order to visualise morphological trends in the data and
reveal the intrinsic structure of various morphology-based cell
phenotypes in the data. Preliminary results show that the
framework is effective in revealing consistent morphological
phenotypes.

I. INTRODUCTION

Directed cell migration is important for many physiolog-
ical processes, including embryonic development [1] and
wound healing [2]. Deregulated cell migration causes human
disease, such as tumour metastasis in cancer [3]. In this
work we study morphological variations in time-lapse images
of human epithelial cells undergoing random migration in
culture (Fig. 1). Cell shapes reflect different modes of
directional change and the cyclic formation/retraction of
cell tails, a mechanism that controls migration directionality
in epithelial cells [4]. Shape variation has thus far been
restricted to the analysis of relatively small cells or organelles
with limited morphological variability [5], [6], [7]. Two

Fig. 1. Representative frames of migrating RPE1 cells expressing mGFP-
LifeAct to mark actin. Scale bars are 20µm and relative time is indicated
in minutes.

1S. Jefferyes and N. Rajpoot are with the Computational Biology and
Bioimaging Group, Department of Computer Science, University of War-
wick, United Kingdom; Corresponding authors: {s.d.r.jefferyes,
n.m.rajpoot}@warwick.ac.uk

2 D. Epstein is with the Warwick Mathematics Institute, University of
Warwick, United Kingdom

3 A. Straube is with the Centre for Mechanochemical Cell Biology, Divi-
sion of Biomedical Cell Biology, University of Warwick, United Kingdom

A B C D

Fig. 2. This figure illustrates the difficulties faced when mutually aligning
complex shapes along intrinsic axes. The curves labelled A & B show cell
contours and their best-fit ellipses with thick major axis. C shows the result
of aligning the two major axes (a common approach). D shows a more
suitable alignment of the two shapes.

common algorithmic approaches are popular in morpholog-
ical analysis:
1) Standard form alignment. This can be through landmark
registration [5], which is limited to data with consistent
landmarks (not present in our RPE cells); or principal axes
alignment [8] where a small difference in shape can lead to
a discontinuity in the axis of alignment (Fig. 2).
2) Measurable shape feature representation. The strategy
of measuring a finite set of selected shape feature vectors
(for example [7]) will only ever represent limited degrees of
variation. While this technique can be appropriate in some
applications, it is often insufficient to reliably capture the
structure of highly variable cell morphology data.

This has led us to develop a quantitative morphological
descriptor that does not impose an importance on any indi-
vidual morphological properties such as size or roundness,
but attempts to discern the prominent areas of shape variation
present within any given dataset of cell images. Rajpoot
& Arif [9] demonstrate the effectiveness of an unsuper-
vised manifold learning technique called diffusion maps [10]
in classifying images of objects by shape similarity. The
framework creates a low dimensional representation of shape
space and extracts the intrinsic variability within a dataset of
shapes.

In this paper, we present a novel framework for ex-
ploratory analysis of intrinsic morphological variations em-
ploying an elastic metric based geodesic distance for shape
similarity comparison. Fig. 3 illustrates the major building
blocks of our representation framework. First the cell con-
tours are segmented from the images. Then the contours are
converted to a shape descriptor representation that facilitates
a rapid computation of a low-dimensional representation of
the set of shapes through a manifold learning algorithm.
This allows for visualisation and quantitative analysis of the
morphological behaviour of individual cells as well as trends
in cell populations.
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Fig. 3. A flow diagram illustrating the algorithm developed for generation of a low dimensional representation of cell shapes. We make repeated use of
this algorithm for quantitative cell shape analysis on images of migrating cells.

II. MATERIALS AND METHODS

A. Cell Culture and Live Cell Imaging

Human retinal pigment epithelial cells (RPE1) express-
ing mGFP-LifeAct were seeded in a glass-bottom chamber
coated with 10 µg/ml fibronectin. Cells were imaged every
5 minutes for 12 hours in a stage top incubator maintaining
37◦C and 5% CO2 on a Deltavision system using a 20×
0.85NA oil immersion objective, a GFP filter set, and a
CoolsnapHQ camera under control of SoftWorx.

B. Contour Extraction

Cell outlines were extracted for every time point using
Quimp10 [11]. We represent each cell shape as a circular
sequence f of N uniformly spaced points in the plane f =
{(x1, y1), (x2, y2), . . . , (xN , yN )}. Note that this sequence
f represents a closed curve with equidistant points, i.e.
||(xN , yN ) − (x1, y1)|| = ||(xi, yi) − (xi+1, yi+1)|| for any
i ∈ {1, . . . N − 1}.

C. Shape Similarity Measure using the Elastic Metric

The success of our exploratory analysis framework de-
pends largely on the selection of an appropriate similarity
measure. This is crucial to the process because it is through
the similarity measure that the algorithm learns the intrinsic
geometric structure of the data. One major challenge relates
to invariance under transformations; the measure of differ-
ence between two curves must be invariant with respect to
change of orientation and change of parameterisation of one
curve, while these are unchanged for the other. A separate,
and only subtly different point, is that any two curves need
to be compared with appropriate relative alignment and
parameterisation. This is discussed in detail in [12].

Our similarity measure employs the notion of a geodesic
distance (as described in [13]) that corresponds to the length
of a path through shape space minimising deformation
between the target shapes. This deformation is measured
through the use of an elastic metric [14] which quantifies the
bending and stretching required to deform between shapes.
Given q0, q1 ∈ C, where C is the Riemannian manifold
representing the space of curves in the plane, let α : [0, 1]→
C be a parameterised path with α(0) = q0 and α(1) = q1.
Then we can define the length of path α to be L(α) =∫ 1

0

√
〈α̇(t), α̇(t)〉dt, according to Elastic metric 〈·, ·〉, and

we can define the distance between q0 and q1 as

dc(q0, q1) = inf
α
L(α). (1)

where α ranges over all paths α : [0, 1]→ C with α(0) = q0

and α(1) = q1.
In order to introduce necessary invariance to in-plane

transformations, we look at shape space (S) as a quotient of
the space of curves by the groups of reparameterisations (Γ)
and rotations in the plane (SO(2)) i.e. S = C/(Γ×SO(2)).
The geodesic distance between two closed curves q0 and q1

is then defined as,

dS([q0], [q1]) = inf
{(γ,O)∈Γ×SO(2)}

dc(q0,O(q1 ◦ γ)
√
γ̇). (2)

Note that O(q ◦ γ)
√
γ̇ is the operation of (γ,O) on q in

the Square-Root Velocity representation [13].
Returning to our discretised contours, if the geodesic distance
between contours fj and fk is d(fj , fk), we define the shape
similarity measure to be,

w(fj , fk) = exp

(
dS(fj , fk)2

σ2

)
(3)

To the best of our knowledge, bandwidth determination is
still an open problem. We make use of reverse soft K-
nearest neighbour density estimation [15] to determine σ.
Upon perturbation of σ by up to 15%, clustering agreement
with unperturbed results remains high (Rand index >0.93).

D. Diffusion Maps

The diffusion maps framework [10] is a non-linear di-
mensionality reduction technique that generates a low-
dimensional coordinate representation of data. Similar data
points in the high-dimensional shape space are represented
by new low-dimensional points that are close; dissimilar data
points are represented by new low-dimensional points that
are far apart.

To perform a diffusion maps based low-dimensional em-
bedding of n contours, {fi} where 1 ≤ i ≤ n, one constructs
an n× n matrix P with its (j, k)th entry given as follows,

pjk =
w(fj , fk)∑
i

w(fj , fi)
(4)

where w(·, ·) is the chosen shape similarity measure. This
matrix P, can be thought of as a Markov transition matrix
(where similarity is analogous to diffusion distance). Then
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we perform eigen-decomposition upon P, and we know by the
Perron-Frobenius theorem that P has exactly one eigenvalue
equal to 1 and all other eigenvalues have strictly smaller
magnitude. So (by reordering if necessary) let 1 = λ0 >
|λ1| ≥ |λ2| ≥ . . . ≥ |λn−1| be the set of eigenvalues,
and {ψi|i = 0, . . . , n − 1} be the set of corresponding n-
dimensional eigenvectors. Then, if ψ(j)

i is the jth component
of the eigenvector ψi, we construct a lower dimensional
representation of contour fj as

ϕj = (λt1ψ
(j)
1 , λt2ψ

(j)
2 , . . . , λtρψ

(j)
ρ ) (5)

where ρ� n is our choice of dimension for the embedding,
and t denotes time in the Markovian sense (we chose t = 1
in our analysis, as we are interested in local geometric
properties of shape space). Note that ρ is chosen to be much
lower than the dimensionality of the original data, and hence
ϕj is a low dimensional embedding of the contours. In a
similar fashion to other dimensionality reduction techniques,
|λi| reflects the proportion of the overall variance of the
dataset that is accounted for in eigenvector ψi. Hence ρ can
be chosen large enough to give the desired accuracy.

E. Morphological Feature based Analysis

To assess the performance of the proposed framework, we
compared it with the morphological feature based analysis
employed in [6] using the morphological features offered
by CellCognition [7], a tool for shape and texture based
morphological analysis of cells. Each shape contour was
converted into a binary mask. Then the following 8 shape
features were computed: area, circularity, dist max, dist min,
dist ratio, foreground irregularity, background irregularity,
and perimeter (see [7] for more details). A z-score normali-
sation and principal component analysis were performed on
the feature vectors in order to obtain the low-dimensional
representation of cell shapes.

F. Hierarchical Clustering

Hard clustering is not the most appropriate way of ex-
amining the structure of the low-dimensional representation
of cell shapes, since often the dataset lies as a continuous
point cloud and not as distinct clusters. For this reason,
we do not greatly concern ourselves with achieving high
cluster validity. However, clustering does allow us to explore
the groups of high-dimensional data (contours) that are
embedded to different parts of the low-dimensional point
cloud in an unsupervised manner. Then the success of the
low-dimensional representation can be judged by how well
the cluster validity is preserved in the low-dimensional space,
i.e. how well each group of contours represents a distinct
morphological phenotype. We used hierarchical clustering
using Ward’s minimum variance method [16].

III. RESULTS AND DISCUSSION

In this section, we present experimental results for 500
cell contours extracted from 25-frame time-lapse image
sequences of migrating RPE1 cells. Fig 4(A) contains a
scatterplot of the top three principal components of the

shape feature vectors computed for each shape (see Sec.
II.E), while Fig 4(B) contains a scatterplot of the top three
embedding coordinates of the dataset using the diffusion
maps framework (see Sec. II.C & II.D). We performed hier-
archical clustering [16] in order to compare the potential for
exploratory analysis of the two low-dimensional representa-
tions. The scatter plots in Fig. 4 are coloured according to the
partitioning into 6 clusters. 8 contours were randomly chosen
from each cluster and are displayed below the hierarchical
dendrogram with the corresponding cluster colour. There is
no ground truth for the membership of clusters, and so there
is no objective criterion to say that one clustering is better
than another. Instead we use a frankly subjective approach,
examining sample contours with cluster labels and assessing
the inter- and intra- cluster shape similarity.

Results shown for feature based analysis in Fig. 4(A) show
a successful separation of simple round shapes. However,
the distribution of different complex shapes is not captured
effectively. For instance, cluster 6 of Fig. 4(A) (in red)
contains a wide variety of morphological phenotypes. Thus
this method is most suitable for the classification of round
shapes as required for the annotation of mitotic stages ([6]
and [7]).

Fig. 4(B) displays results of hierarchical clustering using
our proposed new method. This gives a good separation
of morphological phenotypes. It can be observed from this
result that (a) each cluster seems to contain contours of a
particular phenotype and (b) the perceivable average shape
from each cluster seems different to the others. When ex-
amining the higher levels of the dendrogram, we again see
reasonable agreement. For example, cluster 4 in Fig. 4(B)
is arguably more similar to clusters 1–3 (its cousins in the
hierarchy) than clusters 5–6. The proposed framework has
been successful at distributing the points (each point corre-
sponding to a contour) so as to reflect the shape similarity
through Euclidean distance in our low dimensional space of
coordinates.

IV. CONCLUSIONS

The main contribution of this paper is the presentation of
a framework for exploratory analysis of morphology based
phenotypes of cells with highly variable shapes. The pro-
posed approach is landmark free, is completely unsupervised,
does not require computation of any explicit morphological
feature measurements, and captures the intrinsic non-linear
structure of the high-dimensional shape space of highly
variable morphologies in our RPE cell shape data. It is
computationally expensive to compute distances within the
current framework, for all pairs of a large dataset. In the
future we will instead use our own rapidly computed distance
and similarity measures. We believe this will be useful for
answering several biological and clinical questions.
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Fig. 4. The top 2 scatterplots show clustering of 500 RPE1 cell contours using (A) principal component analysis performed on shape features and (B)
the geodesic distance with the diffusion framework. The axes in (A) are the top 3 principal components. The axes in (B) indicate distances after diffusion.
Relative Euclidean distance should reflect shape similarity between the represented data points. Hierarchical clustering was performed on each set of
embedded points. After constructing the clustering hierarchy, we chose the level which gave 6 clusters, and assigned a colour to each cluster. The points
in the scatter plots are coloured according to their cluster. 8 cell contours were randomly selected from each cluster and these are shown in columns and
with corresponding cluster colour. Dendrograms illustrate the cluster linkage at higher levels.
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