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Abstract— Cell migration is a vital process in living organ-
isms. In particular we are interested in the way that white
blood cells such as neutrophils migrate during episodes of
inflammation which are important events in the working of
the innate immune system. Migration of populations of many
kinds can be modelled using drift-diffusion models by drawing
analogies between the individual agents and the molecules in
a fluid. It is challenging to arrive at a data-driven estimate
of the parameters of this kind of process, particularly so if
the individual agents have time varying properties that are not
uniform over the population. In this paper, we offer a novel
framework to estimate migration dynamics in this context. It
makes use of the Approximate Bayesian Computation approach
for parameter estimation and model selection. The Framework
is applied to zebrafish neutrophil dynamics but is applicable
for general migration scenarios.

I. INTRODUCTION
Cell migration is a key process in complex living organ-

isms. It occurs naturally during embryogenesis and wound
healing, pathologically in tumour metastasis, and is essential
in the processes used for tissue engineering [1]. Our particu-
lar interest is in the migration of neutrophils during episodes
of inflammation and their resolution [2]. The neutrophil is
a type of white blood cell and a key agent in the innate
immune system [3]. Neutrophils migrate rapidly to any
site of injury and infection where they destroy harmful
bacteria and contribute to the healing processes. However,
neutrophils are harmful when wrongly activated or when
their inflammatory response fails to resolve normally [2].
Novel modelling and identification methods are needed to
better understand the migration dynamics of these cells, so
that preventative and therapeutic strategies can be properly
developed for inflammatory diseases.

Drift-diffusion models are often used to model migration
in diverse settings [4], [5]. The distribution of a population
with drift-diffusion dynamics can be described by a partial
differential equation. In simple cases the solution to this
equation could be fitted to observed data in order to arrive at
the dynamic coefficients. However, if the individuals of the
population have non-uniform characteristics this approach
becomes problematic. Furthermore it provides no natural
mechanism for model selection. Hence, there is a need to
develop more sophisticated data-driven modelling methods
to handle the complex scenarios of cell migration.
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The novel contribution we make here is to develop a
framework for modelling cell migration using approximate
Bayesian computation (ABC) [6]. ABC is a family of meth-
ods that arose within the field of population genetics and
is rapidly gaining acceptance and application within a wide
range of research areas. It is a rigorous simulation based
approach for processes where a likelihood function is not
available or not feasible for computation. ABC comes with
the benefits of the Bayesian method [7]: the incorporation of
prior knowledge, automatic regularisation, model selection,
and with uncertainty of identified models and parameters as
a standard output. We are particularly interested in inves-
tigating whether neutrophil migration during inflammation
resolution is directed [8] or random (corresponding to a non-
zero or zero drift term respectively) and we make a novel
use of Bayes factor analysis [9] to address this question.

Toni et al. [10] proposed an ABC method for parameter
estimation and model selection which uses standard error
metrics for vector time series data from dynamical systems.
We develop this into a framework for identifying cell mi-
gration dynamics by using a distributional summary of cell
positions and the Cha-Srihari distance [11] to compare the
resulting distributions. These novel modifications allow us to
handle the challenging problem of quantifying the similarity
of two sets of cell observation data and thus estimate the
underlying dynamics. Whilst our interest particularly focuses
on immune cell migration, this framework could be applied
to any migration process where spatio-temporal observations
are at the population scale.

II. IDENTIFICATION FRAMEWORK

Our ABC-Sequential Monte-Carlo (ABC-SMC) parameter
estimation and model selection algorithm, based largely on
that in [10] is set out in the Appendix. In order to utilise this
in a framework for estimating cell migration dynamics the
following components need to be specified,

• a simulation algorithm, tailored to the application,
• a way of summarising observations from the system,
• a distance measure to compare simulated observations

to those of the real system.
The simulation algorithm is particular to the migration mod-
els and will be developed in the applied section, Section III.

A. Observation Summary

The system observations consist of time indexed sets of
cell positions. In our particular application we have a con-
stant cell population size, which is achieved by fluorescent
cell labelling [5]. However, the number of observed cells
will tend to vary stochastically from time to time due to a
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cell being temporarily indistinguishable from or occluded by
another. Also, to facilitate long experimental run times, the
time between observations is relatively long (compared to
characteristic cells migration times) so that tracking of cells
is not possible. Though, in fact, a strength of the method
is that all available cell observations are included in the
analysis, whereas tracking analysis almost certainly implies
selectivity. The observations of cells in the experimental data
at time t can be described by,

Yt = {xt,i}Mt
i=1, (1)

where Mt 6 Nc is the number of observed cells, Nc the total
number of cells in the system, and the xt,i are the observed
cell positions. If Tobs is the total number of observations a
complete observation set may be defined as,

Yobs = {Yt}Tobs
t=1. (2)

It is clear that for a simulation run to reproduce an observed
set of cell positions subsequent to the initial observation
has probability zero. It is therefore necessary to construct a
summary of the observations which is of low dimension and
yet preserves as much of the information content in the data
as possible. We did this by summarising the cell positions as
a discrete distribution over space, equivalent to a normalised
histogram as follows,

Vt =


∑Mt

i=1 χB1(xt,i)
...∑Mt

i=1 χBb
(xt,i)

 (3)

Yt =
1∑
i Vt,i

Vt, (4)

where Bj , j = 1, . . . , b is a set of spatial intervals forming a
partition of the range of the xt,i; χBj is the indicator function
of interval Bj ; and Yt is thus the normalised form of Vt.

B. Distance Measure

Commonly used methods for measuring the distance be-
tween two distributions include the Kullback-Liebler dis-
tance (KLD) and the Bhattacharyya divergence (BD) [12].
However, KLD is problematic if the distributions compared
do not have identical support. Furthermore, both KLD and
BD (which we used previously [5]), whilst often used for
comparing discrete distribution data, have limitations when
the histograms bars have an inherent order [11]. This is
because both KLD and BD consider only the differences
between corresponding histogram bars and not the amount
of ‘work’ needed to transform one histogram into the other.

Hence, we improve the methodology here, making it more
robust, by using an alternative metric, the Cha-Srihari dis-
tance, which takes account of the work needed to transform
one histogram into another. A naı̈ve way of taking this
into account is to consider the minimal pairwise difference
between all samples making up the histogram data. Com-
puting this is exponential in time as there are n! possible
pair assignments if n is the number of samples. Cha and
Srihari derive an algorithm which is linear in time by noting

that the minimum difference of pairwise assignments is
equivalent to the minimum cost of moving cells (the basic
histogram bar size units) to transform from one histogram
to the other. Their algorithm for computing it is as follows
[11].
Require: Histograms A,B with bar sizes Ai, Bi,

i = 1, . . . , n
Ensure: DCS(A,B) the Cha-Srihari distance between the

two histograms.
for i = 1 to n do

Compute the bar size differences, di = Ai −Bi.
Compute the cumulative sums of the differences,

ci =
∑i

j=1 dj .
end for
Compute DCS(A,B) =

∑n
i=1 |ci|.

The data was summarised in (4) as a separate discrete
distribution for each of the T timepoints. Therefore, the Cha-
Srihari derived distance between two complete observation
sets was defined as follows.

ρC(Y(p),Y(q)) =

Tobs∑
t=1

DCS(Y
(p)
t ,Y

(q)
t ) (5)

III. IDENTIFYING NEUTROPHIL MIGRATION

The framework was applied to the migration of inflam-
matory neutrophils in zebrafish. The data is described in
[4]. We observed in that paper that neutrophils continued
to be recruited to the inflammation site even while earlier
recruited cells were migrating away. In this study, therefore
we propose a more general model to that used in [5] which
includes a simple form of attractant ligand receptor dynamics
to model how individual cells switch between recruitment
and resolution mode. The concept is illustrated in Fig. 1.
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Fig. 1. Tailfin transection of zebrafish larvae 3 days post fertilization
induces inflammation [13]. Attractant proteins recruit neutrophils. A neu-
trophil entering the field of attractant has a full complement of receptors
available on the cell surface for binding attractant molecules. Binding events
result in bias of the cells migration towards the wound. Bound receptors also
become internalised and this weakens the response. We call this receptor
depletion. Eventually, the cell loses its response to the attractant field. It
may now recognises other guidance cues which bias its migration away
from the wound region. The green curves show the cell paths from which
observations are sampled. The blue arrows show recruitment and resolution
biases which are to be estimated together with the coefficient of random
diffusive motion and the receptor depletion rate.

A. Model Description

We formalised the model shown in Fig. 1, by including
receptor depletion terms alongside a basic drift-diffusion
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model. In discrete time this is described as follows,

x
(i)
t+1 = max

(
0, x

(i)
t +

(
bout −R

(i)
t bin

)
∆t+ ω

(i)
t

√
2D∆t

)
(6)

R
(i)
t+1 = R

(i)
t − λmax

(
0,

L− x
(i)
t

L

)
R

(i)
t ∆t, (7)

where x̂
(i)
t+1 is the position x

(i)
t of the ith neutrophil at

time t; bin and bout are respectively bias velocities, or drifts,
towards and away from the wound; R(i)

t is the proportion of
receptors available for the ith cell at time t; ω(i)

t ∼ N (0, 1)
are a family of independent white noise processes; D is
the underlying diffusivity constant or magnitude of random
movement of the neutrophils; ∆t is the time increment;
λ is the composite depletion constant described above; L
is the range of the chemoattractant field. This model is
straightforward to simulate using the output of a random
number generator to sample the ω

(i)
t . We applied the ABC-

SMC algorithm (see Appendix) with three candidate models
which are variants of (6), (7),

• Model 1 : bin and bout = 0, a simple diffusion model.
• Model 2 : bout = 0, a model with no outward bias.
• Model 3 : The full model which includes both inward

(recruiting) and outward (resolution) biases.
The models were compared by the algorithm on a pairwise
basis. Uniform priors were applied for each parameter over
ranges corresponding where possible to physical plausibility,
i.e. bin : [0 − 5 µm min−1], bout : [0 − 2 µm min−1], D : [0 −
200 µm2 min−1], λ : [0 − 0.1]. Furthermore, in comparing
models 2 and 3 the algorithm was applied repeatedly with
increasing values on the lower prior range for the outward
bias, bout. This allowed Bayes factor calculations to determine
the evidence between theses models given what amount of
outward bias is considered significant.

B. Results and Discussion

The model comparison results in the posterior model
marginals shown in Fig. 2. The corresponding Bayes factors
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Fig. 2. Model selection Algorithm IV was applied to pairs of candidates
models to identify the preferred model. The posterior model marginal is
given simply by the number of parameter sets representing each model in
the final generation of samples.

and model evidence [9] are B21 = 24 (strong evidence)
B31 = 2.4 (no significant evidence) with B23 = 3.3
(substantial evidence). Thus Model 2 is the preferred model
and this corresponds to a purely stochastic, non-directed
migration of neutrophils away from the inflammation site
during resolution.

To further explore this result the analysis was repeated
several times with increasing minimum allowed values of
outward drift. The logarithm of the Bayes factor for model
2 with respect to model 3 is plotted against this minimum
allowed value in Fig. 3. The evidence for the zero drift model
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Fig. 3. The Bayes factor for model 2 with respect to model 3 is plotted on a
logarithmic scale against the lower limit on the prior for the drift coefficient
in Model 3. Interpretation of Bayes factor evidence is taken from [9].

increases as the minimum allowed values increases, showing
that if very small values of drift are considered insignificant
the evidence is stronger.

The algorithm calculates parameter estimates as well as
model identification and those for the preferred model, model
2, are shown in Fig. 4. This combination of drift and
diffusivity parameters corresponds to average cell speeds
of approximately 10 µm min−1 in keeping with observed
neutrophil speeds [8].
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Fig. 4. Parameter estimation results for the preferred model, model
2. (a) The posterior distribution over the individual parameters. (b) The
joint distributions over each pair of parameters. The maximum a posteriori
parameter set, calculated via optimization of a kernel density estimate [14]
is bin = 2.1 µm min−1, D = 83 µm2 min−1, λ = 0.0046min−1.

Our finding that zebrafish neutrophil dynamics during
inflammation resolution are purely stochastic conflicts with
an emerging consensus: that the neutrophils exhibit directed
migration during resolution similar to that during recruitment
[8]. The new result in this study suggests, not only that
neutrophil migration during inflammation resolution is purely
stochastic but that receptor depletion dynamics may be the
key to understanding the change of migration mode. This in
turn suggests that the search for ways of influencing neu-
trophil behaviour when things go wrong should be directed
at the cell itself as well as at its external environment.
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IV. CONCLUSION

We have developed a robust framework for estimating mi-
gration models and demonstrated its effectiveness when ap-
plied to zebrafish neutrophil inflammation dynamics. Whilst
the candidate models in this paper are nested, a strength of
the framework is that it is equally applicable to arbitrarily
related models. This gives it an advantage compared to
classical model selection tools. Key to our framework is
the summarising of cell observations using a distributional
description of the cell population adopting the Cha-Srihari
distance to compare the similarity or difference between two
sets of summarised observations.

APPENDIX

The ABC-SMC algorithm was introduced in [15] and
developed for model selection in [10] on which our im-
plementation is based. We have included a non-uniform
acceptance kernel as suggested in [16]. Briefly, a model
and its parameters are sampled from their current joint
distribution. This model is simulated. If the distance between
simulated and experimental observations is within the current
error tolerance this model / parameter set, appropriately
weighted, is accepted as a sample from the target distribu-
tion.
Require: data, Yobs; Monte Carlo population size, N; itera-

tions, T; priors on models π(m) and on model parameters
π(θ|m); simulation algorithm, Y ∼ p(Y|m, θ); distance
metric ρ, model and parameter perturbation kernels M ,
K; decreasing error schedule ϵ1, . . . , ϵT .

Ensure: a set of parameter vectors θi augmented with model
indicator mi, with importance weights ωi, that together
form a weighted sample from the joint posterior distribu-
tion, p(θ,m|Yobs).
for i = 1 to N do

Simulate mi ∼ π(m), θi ∼ π(θ|mi) and
Y ∼ p(Y|mi, θi) until ei = ρ(Y,Yobs) 6 ϵ1.

end for
Set each ω

(1)
i ∝ 1

ϵ1

(
1−

(
ei
ϵ1

)2)
, such that

∑
ω
(1)
i = 1.

for t = 2 to T do
For each model, m, set τ(m)2 = 2Var({θi : mi = m}).
for i = 1 to N do

Choose k from {1 . . . N} with probabilities
{ω1 . . . ωN} and set m∗ = mk and θ∗ = θk.
Simulate m̂i ∼ M(m|m∗).
Re-choose θ∗ from {θj : mj = m̂i} with probabili-
ties {ωj : mj = m̂i}.
Simulate θ̂i ∼ K(θ|θ∗; τ(m̂i)

2) and Y ∼ p(Y|m̂i, θ̂i)
until ei = ρ(Y,Yobs) 6 ϵt.

Set ω̃i =
1
ϵt

(
1−

(
ei
ϵt

)2)
.

end for
Set each ω̂i ∝ ω̃iπ(θ̂i)∑

j:mj=m̂i
ωjK(θ̂i|θj ;τ(m̂i)2)

,

such that
∑

ω̂
(t)
i = 1.

Set each mi = m̂i, θi = θ̂i, ωi = ω̂i.
end for

The distance ρ(., .) was defined as in (5) and thus in-
cludes the summarising of the data as a distribution via (4).
Benchmarking tests indicated that T = 4 was the best choice
for efficiency and we chose N = 4000 to give a good
balance between posterior coverage and computation time.
Error tolerances were chosen automatically: an initialisation
run chose model / parameter sets from the joint prior to form
a set of N parameter vectors with associated errors, ei. ϵ1
was chosen as 0.5max(ei) and ϵT was chosen as the first
percentile of the ei. Parameter sets from the initialisation
run were recycled into the first iteration if their associated
error was less than ϵ1. Then we set ϵi = ϵ1e

−αi, i =
2, . . . , N − 1 with α = (log ϵ1 − log ϵN )/N .

The parameter perturbation kernel was chosen to be zero
mean Gaussian with variance computed as in the algorithm
to be twice the weighted empirical variance of the previous
population. Also, a model perturbation kernel was used in
which the original model was kept with probability 0.6 and
one of the r remaining alternative candidate models with
probability 0.4

r .
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