
Fusion of Lung MR/CT Images Through Lung Vessel Registration∗

Yuma Iwao1, Yingying Wei1, Seiichiro Kagei1, Toshiyuki Gotoh1,

Tae Iwasawa2 and Marcos de Sales Guerra Tsuzuki3

Abstract— Lung perfusion analysis with sequential con-
trasted MRI is an important clinical tool. This work is part of
larger research in which the objective of fusing lung perfusion
analysis and lung anatomical structures. In this work, it is
proposed a multimodality MR/CT lung fusion algorithm based
on lung vessel determination that analyzes lung perfusion. 3D
contrasted MR and 3D CT images are first normalized (slice
thickness, resolution and pixel intensity), then lung features
are determined and elastically registered. The registration
algorithm was checked by mapping in both directions, from
MR to CT and vice-versa. A MR perfusion analysis result is
fused with a 3D CT segmented lung vessel tree.

I. INTRODUCTION

Registration techniques have been developed to improve

the correlation between anatomical and physiological infor-

mation obtained from different imaging modalities (SPECT,

PET, CT and others) [1]. The clinical relevance of lung

registration is underlined by the huge number of recent

publications dealing with the topic. Gotoh et al. [2] pro-

posed a lung registration algorithm for MRIs. Murphy et

al. [3] surveyed several lung registration algorithms for CT

images. However, the large non-linear deformations suffered

by the lung within different inflation levels, makes the exact

lung registration challenging, and advanced algorithms are

required [1].

Lung perfusion analysis using sequential contrasted MRI

has been widely researched, and it is turning to be a very

important clinical tool [1]. The fusion of perfusion analysis

and lung anatomical structures is a current topic of research

in medical imaging. This work is a first step towards such

fusion technique.

This paper is structured as follows. In section II, a lung

vessel segmentation from CT images is presented. In section

III, the proposed method of blood flow determination within

3D sequence of contrasted MRI is explained. Section IV

presents the proposed MR/CT fusion algorithm. Section V

presents a result where the perfusion information (from

MR chest image) is fused with the segmented lung vessel

(explained in section II), and section VI presents the conclu-

sions.
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Fig. 1. Lung anatomical structures determined from a patient with IIPs.
(a) Segmented airways. (b) Lung vessels segmentation. (c) Lung classified
in lobes.

II. LUNG VESSEL SEGMENTATION FROM CT IMAGES

3D region growing algorithms are widely used for airway

segmentation from CT images [4]. Region growing methods

have a current pixel, and recursively search for similar adja-

cent pixels. The algorithm is simple and can be implemented

with very high speed. On the other hand, such an algorithm

can be easily influenced by noise, and it is not simple to

segment bronchial trees with similar CT region intensities.

The lung parenchyma periphery is a challenging region.

Particularly, some situations that often happens can make

the segmentation a hard problem: the lung parenchyma and

intrabronchial regions can have their volumes partially filled

with air; and diseases can produce wall thickness and unclear

noise. To solve these problems, several algorithms have been

proposed, mainly using specific rules [5].

The lungs are composed by five lobes: two in the left

and three in the right. Inside each lobe, two structures

exist without intersection: lung bronchial and vessel trees.

The lung bronchial tree is mainly filled with air and the

lung vessels are mainly filled with blood which has similar

properties to water. Iwao et al. [6] proposed a region growing

algorithm with failure tracking and recovery features that

extracts lung airways and vessels (see Fig. 1.(a)-(b)). The

determined lung airways and vessels are classified into five

lobe regions. A Voronoi diagram is constructed using the

bronchial and vessel trees. The lung lobes are determined

using the Voronoi classification (see Fig. 1.(c)).

III. MR 3D TEMPORAL IMAGES WITH CONTRAST

After injecting a contrast into the blood, its passage

through the vascular system can be monitored by 3D tem-

poral MRI. It is assumed that there is no recirculation

and that the patient is in breath hold with no movements,

consequently it is expected to exhibit just a single peak

in time. For each pixel, its maximum intensity in time is
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Fig. 2. MRI with each pixel with its maximum intensity in time.

determined (see Fig. 2). Such image is called as MR-MIT

(MR with Maximum Intensity in Time).

IV. THE PROPOSED ALGORITHM FOR MR/CT FUSION

MR and CT images have different characteristics (visible

features, slice thickness and resolution, just enumerating a

few). Additionally, both images were taken with the lung in

distinct breathing state. The registration between CT and MR

images is very challenging.

The proposed MR/CT fusion algorithm is shown in Fig. 3.

The input are the two 3D images: CT and temporal contrasted

MR. The proposed algorithm consists in two great steps

in which are shown in the internal rectangle. The first

step normalizes CT and MR features with the objective of

creating a pixel by pixel direct mapping between them (slice

thickness, resolution and pixel intensity). The second step

searches for image features and creates a flexible registration

among the determined image features. The fusion algorithm

creates a mapping that can fuse the perfusion information

with the segmented lung vessels (explained in section II).

A. MR and CT images Normalization

The first module in the first step, shown in Fig. 3, is

the slice correspondence determination. The slice thickness

for MR and CT are respectively 12 mm and 1 mm
1.

Both images, MR and CT, are processed to reduce their

differences. Initially, adjacent CT images are grouped to

have a correspondence with one MRI. The pixels with the

same (x, y) coordinates are normalized, this way one CT

normalized image corresponds to one MRI, and both images

have the same slice thickness. The first slice correspondence

between MR/CT is manually determined, and the subsequent

correspondence is automatic. If necessary manual correction

can be done.

The lung vessels are segmented from the MR-MIT image

by selecting the pixels with intensity higher than a threshold

(see Fig. 2). CT image resolution is adjusted to MRI resolu-

tion by applying a Gaussian filter in which the parameters are

determined by manipulating MR/CT frequency components.

The lung contour is determined in the CT and MR images,

then pixel intensity is adjusted just internally to the lung. The

CT image is binarized, then a labeling algorithm is applied

to determine the left and right lungs, and a morphological

operator is used to smooth the lung boundary (see Fig. 4.(a)).

The MR-MIT image is binarized using a threshold. The heart

1MR imaging has a balance between speed and quality.

Fig. 3. Proposed MR/CT fusion algorithm shown in the internal rectangles
(first and second steps).

(a) (b) (c)

Fig. 4. (a) Lung segmented from CT image. (b) Heart segmented from
MR–MIT image. (c) Lung segmented from MRI.

can be segmented by assuming that the contrast concentrates

at it (see Fig. 4.(b)). One MRI from the temporal sequence

is selected, pixels with higher intensity are associated with

water. After a first binarization, the heart that was previously

obtained from the MR-MIT image is removed. The lung

correct regions are manually selected. Finally, morphological

operators are applied to smooth the lung boundary (Fig. 4.(c)

shows the final result).

The pixel intensity is adjusted just internally to the pre-

viously determined lung masks. Each modality might have

different number of bits, the intensity interval from both

images is converted to 8 bits. Fig. 5.(a) and (b), respectively,

show one MR and CT images with their corresponding

masks applied. Fig. 5.(c) shows the result after applying

pixel intensity histogram normalization to the CT image.

All the processing executed until now, have the objective

to approximate the lung features from MR and CT images.

One might compare Figs. 5.(a) and (c).

B. Feature Point Determination and Elastic Matching

The Harris corner detector [7] is used, internally to

the lung mask, to determine robust features in the MRIs.

(a) (b) (c)

Fig. 5. (a) MRI with the mask determined in Fig. 4.(c). (b) CT image with
the mask determined in Fig. 4.(a) applied. (c) Result after pixel intensity
histogram normalization is applied to the CT image.

3420



(a) (b) 

Fig. 6. (a) Lung features determined using the Harris corner detector [7]. 
(b) The 5 most confident features picked. 

(a) (b) (c) 

Fig. 7. (a) The 5 feature points in the MRI. (b) The 5 groups of feature 
points determined in the CT image, each one with 10 elements. (c) The 
feature points from the CT image that define a congruent group are analyzed 
for possible correspondence. 

Fig. 6.(a) shows the determined lung features. For each de
termined feature, a voting procedure is executed to determine 
the most confident feature considering a square with side r1, 
where r 1 is around 30% of the determined lung height. The 5 
most confident features Qf'1 R, 1 :::; i = 1, · · · , 5, are picked. 
Fig. 6.(b) shows the picked 5 most confident lung features. 
The square side is reduced if no 5 most confident features 
can be picked. 

For each of the 5 features Qf'1 R, i = 1, · · · , 5, a template 
matching algorithm is used to determine up to 10 possible 
correspondences Qfjr, i = 1, · · ·, 5, j = 1, · · ·, 10, in the CT 
images. The 5 MR features define a topological configuration 
as shown in Fig. 7.(a). The 10 possible correspondences in 
the CT image define 5 groups of features (see Fig. 7.(b)). 
One feature point from each CT group is combined to define 
a congruent group { Q 1k1 , Qlk2 , Q1k3 , Qlk4 , Qlk5 }, where 
k1 = 1, · · ·, 10, l = 1, · · ·, 5. A valid correspondent group 
must have the same topology as the original MR feature 
group, in this case it is said that both groups are congruent 
(see Fig. 7.(c)). This way the feature group that minimizes 

5 

B = dmax X L[l - Rcc(Qf'1R, Qfk~)] (1) 
i=l 

is selected, where Rec ( Qf'1 R, Qfk~) is the correlation be
tween both feature points and { QfkT} is a correspondent 
group in the CT image. dmax is the maximum weight 
distance that is calculated as 

{ MR pCT} dmax = max pi - i 
i 

5 

prR = d(Qf'1R, cMR)/ L d(qf/R, cMR) 
k=l 

(a) (b) 

Fig. 8. (a) The 5 MRI features. (b) The 5 CT image mapped features. 

(a) (b) 

Fig. 9. (a) MRI with the Voronoi diagram and a new feature candidate. (b) 
CT image with the Voronoi diagram and possible correspondent features. 

5 

pCT = d(QCT cCT)/ "d(QCT cCT) 
i 2Ji ' L......t k]k' 

k=l 

where GM R and ccT are the center points for the MR 
and CT feature groups and d(., .) is the Euclidian distance 
between two points. 

Figure 8 shows a correspondence. A Voronoi diagram is 
created using the 5 feature points. This way, it is possible to 
define a Voronoi region correspondence between MR and CT 
images. For all remaining MR feature points, correspondent 
CT feature points are searched in the correspondent internally 
to the correspondent Voronoi region using expression (1) (see 
Fig. 9). 

Finally, the determined feature mapping are used as input 
to the metamorphosis algorithm proposed by Beier and 
Neely [8]. Using the metamorphosis, new CT feature candi
dates can be mapped back to the MRI. 

V. RESULTS 

The sequences of MRis 2 used in the experiment were 
obtained from a patient with lung cancer lying supine inside 
a 1.5 T Intera (Philips Medical Systems). A total of 12 slices 
defining a 3D MR volume was taken in 16 distinct time 
instants, slice thickness of 12 mm, matrix size= 256 x 256 
pixels, pixel size of 1.68 x 1.68 mm2 and 12 bits per pixel. 
The CT image has 296 images with 512 x 512 pixels, slice 
thickness of 1 mm and pixel size of 0.723 x 0.723 mm2

. 

Figure 10 shows some registration results from the pro
posed algorithm. Fig. 10.(a) shows the MRI with the original 
5 feature points. Fig. 10.(b) shows the 5 registered CT feature 
points. Fig. 10.(c) shows the all the original MR features 
and some additional features inversely mapped from the CT 

2The protocol was approved by the hospital medical-ethics committee 
of Kanagawa Cardiovascular Respiratory Center, and informed consent was 
obtained from the patient. 
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(a) (b) 

(c) (d) 

Fig. 10. (a) The 5 MRI features. (b) The 5 CT image mapped features. 
(c) All determined features in the MRI. (d) The mapped features in the CT 
image. 

(a) (b) 

Fig. 11. (a) Perfusion analysis result shown in a CT image where the lobes 
where automatically classified (the black line shows the interlobe surface). 
(b) Semi transparent lung with perfusion analysis result. 

image. Fig. 10.(d) shows a CT image with features registered 
from the MRI and additional features determined in the CT 
image. 

The point correspondence was visually verified, and the 
proposed algorithm showed to be averagely 80% correct. 
The temporal MRis with contrast was used as input for a 
blood perfusion analysis and the result was mapped in the 
segmented lung vessel tree and CT images. Fig. 11.(a) shows 
the perfusion analysis result registered with a CT image. 
Fig. 11.(b) show a semi transparent lung with the registered 
perfusion analysis result. Fig. 12.(a) shows transparent lungs 
with the lung vessel tree with registered perfusion analysis 
result. Fig. 12.(b) shows some lung lobes with the lung vessel 
tree with registered perfusion analysis result. 

VI. CONCLUSIONS AND FUTURE WORKS 

A multimodality MR/CT registration algorithm was pro
posed. Initially, lung CT and MR images are normalized, 
feature points are determined and an elastic matching is 
performed. The obtained mapping registration was used to 

(a) (b) 

Fig. 12. (a) Perfusion result shown with transparent lungs. (b) Perfusion 
result shown with two lobes. 

combine MR perfusion analysis result with segmented lung 
vessel tree. The proposed method can be improved if the 
segmented lung vessel tree is simultaneously used with the 
proposed registration algorithm. Additionally, the segmented 
lobes from the CT image can be mapped into the 3D MRI 
and the perfusion at each lobe can be determined. As future 
work, numerical and clinical evaluations of such algorithm 
are under research. 
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