
  

 

Abstract—Fluorescence molecular tomography (FMT) is a 

promising imaging modality that offers the possibilities to 

monitor cellular and molecular function in vivo. However, 

accurate and stable reconstruction of fluorescence-labeled 

targets remains a challenging problem. In this contribution, a 

two-stage reconstruction algorithm that combines sparse 

regularization with adaptive finite element method is proposed, 

and two different inversion algorithms are employed separately 

on the initial coarse mesh and the second refined one. Numerical 

experiment results with a digital mouse model demonstrate the 

stability and computational efficiency of the proposed method 

for FMT. 

I. INTRODUCTION 

Optical molecular imaging of small animal has been 
extensively applied in preclinical research. Compared to 
planar fluorescence reflectance imaging, three-dimensional 
tomography tends to provide more accurate and quantitative 
biological information to facilitate monitoring biological 
function particularly in terms of disease progression and drug 
efficacy [1-3]. Therefore, fluorescence molecular tomography 
(FMT), aiming at localization and quantification of 
fluorescence probes, have drawn great attention and witnessed 
a rapid development in recent years. 

The reconstruction problem involved in this paper is 
solely to recover fluorescent probe concentration. Generally, 
one can figure out the distribution of fluorescent target by 
minimizing the misfit between the boundary intensity 
measurements and the measurements predicted with a forward 
model. For example, the photon propagation within biological 
tissue can be well depicted using the steady diffusion 
approximation model of radiative transfer equation, i.e. steady 
diffusion equation. By neglecting the change in optical 
properties of the medium (absorption and scattering), the 
corresponding forward model comes down to a linear 
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equation and the reconstruction is typically achieved by 
inverse techniques. Since there are a large number of 
unknowns that need to be resolved from very limited 
boundary measurements, the inverse problem of FMT is 
highly ill-posed [4,5]. Therefore, accurate and stable 
reconstruction of fluorescence-labeled targets remains a 
challenge.  

In order to obtain a stable approximate solution and 
improve the imaging quality, some additional prior 
information should be incorporated to regularize the FMT 
inverse problem, such as anatomical structure, local 
smoothness, and so on [4]. And a variety of methods that 
include regularization have been presented for linear 
reconstruction in FMT. Among them, Tikhonov 
regularization is an l2-norm method that can be solved 
efficiently by standard minimization algorithms, but tends to 
produce over-smoothed solution [5].  

In view of the fact that most of the mechanisms studied 

with FMT occur in very localized regions, some lp (1≤p<2) 

norm based sparse regularization methods have recently 
drawn considerable amount of attention in FMT [5,6]. In these 
reports, a typical way of exploiting the sparsity constraint is to 
replace the l2-norm regularizer in Tikhonov method with 
l1-norm one. And then sophisticated algorithm is applied to 
solve the convex optimal problem.  

Recently, a hybrid reconstruction based on the hp-finite 
element method has been proposed for FMT to improve the 
stability of the solution [7]. It involves a multi-level 
reconstruction process, i.e. sparsity regularization is applied 
to the first coarse mesh level, and Landweber iterative 
regularization is adopted on the subsequent refined meshes. 
The simulation experiments show the potential and feasibility 
of the hybrid approach (hereinafter to be referred as 
ITCG_Land), but the accuracy of the reconstruction needs 
further improvement.  

In this contribution, we propose a two-stage optimization 
algorithm for linear reconstruction in FMT. By using the 
sparsity as a cue for finding the correct solution, fluorescent 
concentration is recovered via solving two l1-norm 
minimization problems. In the first stage, an approximate 
message passing (AMP) algorithm was applied to a coarse 
finite element mesh, which produces an initial solution [8]. 
After that, a local region is determined and refined according 
to the obtained initial solution, and the fluorescent 
concentration is finally recovered by solving a small scale 
optimization problem with primal augmented Lagrangian 
method (PALM) in the second stage [9]. The proposed 
algorithm is referred as AMP_PALM in the following parts of 
this article. 
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II. METHOD 

A. The inverse model of FMT 

Based on the diffusion equation and Robin-type boundary 
conditions, the matrix form of the relationship between the 
measured photon flux density  and the fluorescent yield X is 
derived with the finite element method [11-13]: 

AX                                    (1) 

where system matrix ( )
m n

A R m n


  is usually 

ill-conditioned.  

As mentioned above, most of the mechanisms studied with 
FMT happen in localized regions, which means that the 
fluorescent targets to be recovered are usually very small and 
sparse compared with the entire reconstruction domain [6]. 
Moreover, the sparsity-promoting property of l1-norm 
regularization has been shown in many areas of optical 
tomography [13]. Consequently, according sparse signal 
recovery framework, the unknown fluorescent concentration 
can be well approximated by the solution of the following 
l1-norm minimization problem: 

 
2

2 1
min

X

AX X                       (2) 

where 
i

i

X x  and   is a regularization parameter. 

B. Two-stage Reconstruction 

In optical tomography adaptive finite element method 
(AFEM) is a good tradeoff between image resolution and 
stabilization of the inverse problem [5]. The two stage 
reconstruction present in this paper is developed based on the 
adaptive finite element method. However, the proposed 
method is different from the previous AFEM methods that use 
one inversion algorithm on different mesh levels. The 
reconstruction process is divided into two related stages with 
different discretization levels, and the difference between the 
former and the latter mesh is also taken into account.   

In the first stage, the domain is discretized into a uniformly 
coarse mesh to maintain the computational economy. To 
obtain an initial solution, AMP algorithm is exploited to solve 
the objective function on the coarse mesh. AMP is a fast and 
simple costless modification to iterative thresholding, inspired 
by belief propagation framework in graphical models [14]. 
Following the graph-theoretic framework, the reconstruction 

problem of FMT is modeled by a factor graph { , , }G X M N . 

Here G is a complete bipartite graph with variable nodes  

X={X1,X2, … ,Xn}, factor nodes M={m1,m2, … ,mn}, and 

edges {( , ) , }
i j i j

N X M X m X X m M     . Assuming 

that the probability distribution of each variable 
i

X  satisfies a 

Laplace prior 
1

exp( )
i

X
z

 , and every factor node 
j

m  is a 

Dirac delta function  ( )
j j

AX   , then the joint 

probability distribution for the vector  and solution X is the 
following function: 

 
n m

i 1 j 1
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i j j
p X X AX

z
 

 
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When   , the joint probability ( , )p X  will concentrate 

around the sparse solution of Equation (2). In this model, 

every function 
j

m ensures the solution satisfies the 

constraint AX  . Therefore, the fluorescent yield can be 
estimated by iteratively computing the marginal distribution 

( )
i

p X  for each given variable
i

X .  

Although the solution in this step is not accurate enough 
due to the coarse mesh, it still indicates the potential region 
around real targets. Hence, after the first round inversion 
completes, adaptive mesh refinement starts. All of the entries 
with nonzero reconstructed value are selected to be refined 
using the longest-edge bisection method. Thus, a locally 
refined mesh is obtained, keeping fine resolution in region of 
interest and coarser resolution in other regions.  

In the second stage, the size of the minimization problem 
apparently diminishes, because the solution space is 
constrained to the refined region.  Another first-order method 
for solving Equation (2), the PALM algorithm, is applied to 
the recover the fluorescent target.  Specifically, the objective 
function in Equation (2) is reformulated to the following form 
with an additional penalty term: 

2
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where   is the regularization parameter,   is a vector of 

Lagrangian multipliers. Finally, the solution is determined by 

computing X  and   iteratively: 
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                     (5) 

where the subproblem for X is solved via a fast iterative 
soft-thresholding algorithm . The interested reader is referred 
to for more details of PALM algorithm in [9]. 

III. EXPERIMENTS AND RESULTS 

A.  3D digital mouse model 

In this section, we evaluate the performance and 
effectiveness of the proposed two-stage reconstruction 
method with a group of numerical experiments.  

In the following experiments, we utilize the same digital 
mouse model as in [7] for comparison purposes. The 3D 
digital mouse atlas of CT and cryosection data was utilized to 
provide anatomical information. And only the torso section of 
the mouse model with a height of 35mm was selected as the 
region to be investigated. A cylindrical fluorescent target with 
0.8 mm radius and 1.6 mm height locates in the liver with 
center at (11.9mm, 6.4mm, 16.4mm), as shown in Figure 1. 
And the fluorescent concentration of the target is set as 
0.05mm

-1
. The optical parameters of different organs are 

listed in Table I [7]. 
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Figure 1.   The torso of the mouse  mode with a cylindrical fluorescent target 

in the liver. 

TABLE I.  OPTICAL PROPERTIES FOR THE ATLAS ORGANS REGION  

Material 
ax


1

( )mm
  

sx
 

1
( )mm

  
am


1

( )mm
  

sm
 

1
( )mm

  

Heart 0.0083 1.01 0.0104 0.99 

Lungs 0.0133 1.97 0.0203 1.95 

Liver 0.0329 0.70 0.0176 0.65 

Stomach 0.0114 1.74 0.0070 1.36 

Kidneys 0.0660 2.25 0.0380 2.02 

Muscle 0.0052 1.08 0.0068 1.03 

B. Source Reconstruction 

The simulated measurements were generated by solving 
the forward model with FEM. Specifically, the torso model of 
mouse was discretized into 132,202 tetrahedral elements and 
24,906 nodes. And the fluorescent target was excited by 18 
point sources at different positions in sequence.  

In the first-stage reconstruction, the maximum mesh size 
was conditioned as 2.8mm. The model was discretized into 
14,086 tetrahedral elements and 2954 nodes. Then the AMP 
algorithm was applied for the first round reconstruction on this 
initial coarse mesh. The regularization parameter was adjusted 
manually, ranging from 1e-7 to 1e-12. 

 In all of the experiments, the largest component of vector 
X  was regarded as the reconstructed fluorescent yield, and 

the corresponding node were recognized as the center of the 
target. 

The second-stage reconstruction was based on the 
first-stage solution. In our implementation, the elements with 
their values bigger than 70% of the maximum were selected 
for refinement. Additionally, the corresponding boundary 
elements were also selected to be divided with the longest 
refinement method.  

In the first set of experiments, we compared the 
reconstruction results by the AMP_PALM, ITCG_Land, and 
L1LS_L1LS. Here L1LS_L1LS means the L1LS algorithm 
[14] is applied twice in succession on the different mesh levels. 
The quality of the reconstruction is quantitatively evaluated 
with location error and reconstructed fluorescent yield. 
Location error is the distance between the centers of the 
reconstructed target and the actual one. The quantitative 
comparisons between them are presented in Table II. Figure 2 
shows the reconstruction results of the above three methods in 
the form of 3D iso-surface. 

TABLE II.   RESULTS FOR SOURCE RECONSTRUCTION 

 

(a) AMP_PALM 

 

(b) ITCG_Land 

 

(c) L1LS_L1LS 

Figure 2.  3D Reconstuction results for a single fluorescent target by the 

proposed AMP_PALM, ITCG_Land, and L1LS_L1LS method. 

From Table II, we observe that AMP_PALM is the best 
algorithm followed by ITCG_Land. As for the location 
accuracy, the two-stage method produced the most accurate 
result with an error of 0.66 mm. In contrast, the location errors 
for the other two methods are almost doubled.  Additionally, 
the fluorescent yield of L1LS_L1LS method is obviously 
lower than AMP_PALM and ITCG_Land method. Compared 
to the actual fluorescent concentration, the relative deviation 

Method 
Position Center 

(mm) 

Location Error 

(mm) 

Fluorescent  Yield 

 (mm-1) 

AMP_PALM 12.4,6.8,16.6 0.660 0.00122 

ITCG_Land 11.5,6.6,15.4 1.048 0.00117 

L1LS_L1LS 11.5,6.9,15.5 1.049 0.00025 
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of the reconstructed value by L1LS_L1LS method reaches up 
to 95%, whereas the relative error by AMP_PALM method 
reduces to 75%. 

C. Stability Analysis 

To evaluate the stability and robustness of the two-stage 
reconstruction algorithm, a group of experiments were 
conducted by adding different levels of Gaussian noise to 
simulated boundary measurements. For each noise level, we 
performed 100 independent reconstructions. The average 
result is summarized in Table III.  

From Table III, we can obviously observe that the 
reconstructed location remain constant as the noise level 
increases. The fluorescent yield is not significantly affected by 
noise for all of the noise levels considered. The results show 
that the proposed two-stage reconstruction method is quite 
robust to measurement noise.  

TABLE III.  IMPACT OF NOISE ON THE PROPOSED METHOD 

Noise level 
Position Center 

(mm) 

Location Error 

(mm) 

Fluorescent  Yield 

(mm-1) 

0% 12.4,6.8,16.6 0.66 0.00122 

10% 12.4,6.8,16.6 0.66 0.00123 

20% 12.4,6.8,16.6 0.66 0.00121 

30% 12.4,6.8,16.6 0.66 0.00123 

 

IV. DISCUSSION AND CONCLUSION 

In this paper, we report a two-stage reconstruction method 
for linear reconstruction problem in FMT. Taking the sparse 
distribution of fluorescent target into account, we take full use 
of sparse regularization to deal with the ill-posedness of FMT.  
Additionally, the proposed method combines the merit of 
adaptive FEM to to maintain stability and efficiency. The 
experiments with a mouse atlas model demonstrate that the 
two-stage method can provide satisfactory results in 
reconstruction quality and robustness.  

As mentioned in section II, the two rounds of 
reconstruction are related. Since the second stage 
reconstruction is based on the solution of the first-stage, the 
inversion algorithm on the initial coarse mesh plays an 
important role in the whole reconstruction process. As an 
illustration, Table IV presents the comparison results by AMP, 
ITCG, and L1LS method on the first mesh level. As indicated 
in Table IV, the AMP algorithm performs best on this mesh 
level, both in term of location accuracy and fluorescent yield. 
Hence, it is reasonable that a better initial solution guides the 
subsequent reconstruction on finer meshes to yield more 
accurate quantitative results.  

The two-stage reconstruction involves two distinct 
algorithms. AMP is a dramatically fast algorithm that has been 
verified by Donoho et al. in [8]. For PALM, the computational 
time is dominated by matrix-vector multiplication, whose 
complexity is O(n

2
), but the size of the matrix on the second 

mesh level has sharply decreased with the local refinement 
processing. Consequently, the two-stage reconstruction 
method is computational efficient, which is also evidenced in 

our experiment results. The AMP_PALM runs faster than its 
counterparts do.  

TABLE IV.  RESULTS WITH DIFFERENT METHODS ON FIRST MESH LEVEL 

Method 
Position Center 

(mm) 

Location Error 

(mm) 

Fluorescent  Yield 

(mm-1) 

AMP 10.1,6.4,15.7 1.925 2.4e-5 

ITCG 11.4,6.5,15.4 5.294 3.0e-5 

L1LS 11.5,6.9,15.5 5.355 3.1e-5 

In conclusion, we have proposed an effective 
reconstruction method for FMT. Numerical simulation 
illustrate that the proposed two-stage reconstruction enable 
accurate and stable recovery of the fluorescent target. In vivo 
mouse studies using the proposed method will be reported in 
the future. 
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