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Abstract— Photoacoustic imaging is a biomedical imaging
modality capable of early cancer detection. In this paper,
we proposed a novel iterative Projections Onto Convex Sets
(POCS) method for improving photoacoustic reconstruction.
This method aims to obtain a non negative pressure distribution
satisfying the measured signals. This POCS method is per-
formed in the Fourier Bessel space avoiding matrix inversions
in the projections, speeding up projections and is capable of
handling the large data sets present in photoacoustic imaging.
The numerical experiments performed showed that improved
reconstruction was obtained with a few iterations together with
the recovery of some lost information.

Index Terms— Convex projections, photoacoustic tomogra-
phy, thermoacoustic, Fourier Bessel series, POCS

I. INTRODUCTION

Photoacoustic imaging uses a laser pulse to thermally

excite the sample under test. This thermal excitation causes

acoustic waves that are detected by sensors. The rate of

absorption of optical energy from the laser pulse is dependent

on the type of tissue. Photoacoustic imaging can be used for

early cancer detection, blood vessel imaging, small animal

imaging and has several other biomedical imaging uses [1].

The Projection Onto Convex Sets (POCS) method recovers

a function in the intersection of convex sets. This method is

applied for image recovery and uses a sequence of alter-

nating projections onto these sets. This method is popular

for biomedical imaging with applications in MRI [2], in

computed tomography [3] and several other image restoration

applications (see [3] and the references therein).

In normal photoacoustic inversion, the reconstruction must

satisfy both the measured data as well as the pressure

distribution being non negative. In previous reconstruction

methods reviewed in [1], the values less than zero were sim-

ply set to zero. We propose an iterative, POCS method that

reconstructs a pressure distribution satisfying both the non

negativity constraint and the measured data. The projections

are done in the Fourier Bessel space avoiding matrix inver-

sions, providing fast projections and is capable of dealing

with the large data sets present in photoacoustic imaging.

We show that the POCS methods results in better quality

reconstruction with the recovery of some lost information. In

a previous paper, the authors have shown how incorporating

a total variation (TV) minimization approach better recon-

structions are possible [4]. In this paper, the proposed POCS

method does not require prior knowledge that the image is

piecewise constant as is required by the TV minimization

method.

The authors are with the Research School of Engineering, Australian
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The contributions of this paper are as follows. We show

that significant improvements in the reconstructed image can

be obtained by incorporating a non negative constraint on the

image which must also satisfy the measured data. Further, an

efficient POCS based method in the Fourier Bessel domain is

proposed to find an image satisfying both the non-negativity

constraint and the measured signals. This method has the

advantage of utilizing fast Fourier Bessel transforms and not

requiring the computation of the inverse of a large matrix.

Hence, is suitable for photoacoustic reconstruction where we

have large datasets.

This paper is organized as follows. Section 2 discusses

photoacoustic inversion. Section 3 describes the POCS

method in the Fourier Bessel space, the projection operators,

the numerical algorithm to implement the POCS method

and its extension to 3D photoacoustic inversion. Section 4

discusses the numerical experiments performed and Section

5 provides a summary of the main ideas presented in this

paper.

II. PHOTOACOUSTIC THEORY

The photoacoustic inversion problem assuming constant

speed of acoustic waves c can be formulated mathematically

in the frequency domain as

p(rs, k) = −ikc
∫

V

p0(r)G(k; rs, r) dr (1)

where p(rs, k) is the measured pressure at sensor position

rs,
∫
V
(·)dr is the integration over a volume, k is the

wavenumber equal to 2πf/c with f the frequency, p0(r)
is the initial pressure distribution and G(·) is the 3D Green’s

function.

The 2D photoacoustic inverse problem is formulated as

p(rs, k) = −ikc
∫

S

p0(r)G2D(k; rs, r) dr (2)

where
∫
S
(·)dr is integration over a surface and G2D(·) is

the 2D Green’s function. The 2D inverse problem occurs

when the pressure distribution p0(r) varies over two dimen-

sions with point sensors or when the z-averaged pressure

distribution is reconstructed using integrating line sensors. A

detailed description and derivation of the 2D photoacoustic

inverse problem is provided in [5].

III. PROPOSED POCS METHOD FOR PHOTOACOUSTIC

INVERSION

We consider a 2D source distribution p0(r) contained

within a 2D ball B(r0) with bounding radius r0 and the

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 3411



sensors are placed in a circle of radius rs greater than the

bounding radius. The source distribution is expanded with a

2D Fourier Bessel series expansion

p0(r) =

∞∑

m=−∞

∞∑

ℓ=1

βmℓΨmℓ (3)

where βmℓ are complex, Fourier Bessel coefficients and the

basis functions are

Ψmℓ ,
1√
π

1

r0Jm+1(zmℓ)
Jm

(
zmℓ
r0
r

)
eimφ. (4)

where Jm(·) is the Bessel function of mode m, zmℓ is the

ℓth root of Jm(·) and ℓ is the zero index.

The 2D Fourier Bessel series are a complete orthonormal

expansion for the Hilbert space of square integrable functions

on the 2D ball L2(B(r0)) with the inner product

〈p0(r), f(r)〉 ,

∫ 2π

0

∫ r0

0

p0(r)f(r)r dr dφ. (5)

where (·) is the complex conjugate operator.

The discrete version of this inner product replaces the

integration with sums by applying numerical integration

methods such as the trapezoidal method.

The method introduced in [6] calculates the Fourier Bessel

coefficients βmℓ by taking the spatial Fourier transform of

the aperture at frequencies corresponding to the Bessel zeros

i.e., at k = zmℓ/r0 and then dividing by a suitable weight.

A. Projections from Measurements

In practice, measurements are taken for a finite bandwidth

with kl the lower and ku the upper frequency limit. From

this bandwidth, only a finite set of Fourier Bessel coefficients

can be calculated and these belong the set Λ = {m, ℓ|kl ≤
zmℓ/r0 ≤ ku}. Therefore, the measurements are satisfied

by a set of source distributions which satisfy the following

condition

〈p0(r),Ψmℓ〉 = β̃mℓ for ∀{m, ℓ} ∈ Λ (6)

where β̃mℓ are the calculated Fourier Bessel coefficients. The

set of source distributions satisfying this constraint will be

denoted by set A.

B. Projection Operators

We define an index limiting operator as follows.

Definition 1 (Index Limiting Operator): The index limit-

ing operator for the Hilbert space L2(B(r0)) is a truncated

Fourier Bessel transform

(BΛ p0)(r) =
∑

{m,ℓ}∈Λ

〈p0(r),Ψmℓ〉Ψmℓ (7)

and can be thought of as a filter on B(r0).

The complement of the index limiting operator is

(BΛC p0)(r) = p0(r)− (BΛ p0)(r) (8)

where ΛC is the complement of set Λ. From these definitions,

the projection to preserve the calculated coefficients β̃mℓ is

derived as

(PA p0)(r) = (BΛC p0)(r) +
∑

{m,ℓ}∈Λ

β̃mℓΨmℓ. (9)

For any source distribution p0(r), this projection adds the

contributions from the calculated coefficients to the source

distribution from which the contribution of these available

basis functions has been removed beforehand.

In normal POCS method, calculation of an inverse matrix

is required. In photoacoustics where we have large data

set, this becomes computationally expensive. In the Fourier

Bessel space, the projections provided by the measured

data are converted to projections of the pressure distribution

onto a set of orthonormal basis functions and so avoids

calculating the inverse of a matrix. Further, the projections

and synthesis onto the orthonormal Fourier Bessel series can

be performed with the Fast Fourier Transform (FFT) and the

fast Bessel transforms [7]. This speeds up the calculation of

this projection and speed of reconstruction is an important

factor in photoacoustic inversion.

The pressure distribution is also non negative i.e., p0(r) ≥
0. The set distributions satisfying this non negativity convex

constraint is denoted by set B and the projection operator

PB simply sets all negative values in p0(r) to zero.

C. Numerical Algorithm

The initial distribution is obtained by

p̂
(0)
0 (r) =

∑

{m,ℓ}∈Λ

= β̃mℓΨmℓ (10)

and uses the available coefficients in the measured data β̃mℓ.

A new source distribution is obtained by projecting onto B.

This removes the index limiting property of the first pressure

distribution. Then a projection to preserve the calculated

coefficients β̃mℓ are performed. This process is repeated

iteratively

p̃
(κ)
0 (r) = (PB p̂

(κ)
0 )(r)

p̂
(κ+1)
0 (r) = (PAp̃

(κ)
0 )(r)

κ = 0, 1, 2, . . .

(11)

where κ is the iteration index.

A sequence of pressure distributions are generated that

eventually converges to p⋆0(r) ∈ A∩B and is shown by Fig.

1. In the implementation, we utilized the discrete version of

the inner product.

D. Proof Convergence

We adapt the convergence proof for the normal POCS

method provided in [8] to show that our proposed method

converges. In the POCS method, each projection brings the

initial pressure distribution p
(κ)
0 (r) closer to p⋆0(r), and we
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Fig. 1: Our POCS method iteratively projects onto the sets

A and B.

can show this by

‖p̂(κ)0 (r)− p⋆0(r)‖2 = ‖p̂
(κ)
0 (r)− p̃

(κ)
0 (r) + p̃

(κ)
0 (r)− p⋆0(r)‖2

= ‖p̂(κ)0 (r)− p̃
(κ)
0 (r)‖2 + ‖p̃

(κ)
0 (r)− p⋆0(r)‖2

+ 2(p̂
(κ)
0 (r)− p̃

(κ)
0 (r))

T (p̃
(κ)
0 (r)− p⋆0(r))

≥ ‖p̂(κ)0 (r)− p̃
(κ)
0 (r)‖2 + ‖p̃

(κ)
0 (r)− p⋆0(r)‖2.

(12)

The last inequality was derived by using a property of the

Euclidean projection which satisfies

B ⊆ {p̃(κ)0 (r) | (p̂
(κ)
0 (r)− p̃

(κ)
0 (r))

T (p̃
(κ)
0 (r)− p⋆0(r)) ≤ 0}

(13)

since p̃
(κ)
0 (r) is the projection of p̂

(κ)
0 (r) onto set B. Rear-

ranging (12), we get

‖p̃(κ)0 (r)− p⋆0(r)‖2

≤ ‖p̂(κ)0 (r)− p⋆0(r)‖2 − ‖p̂
(κ)
0 (r)− p̃

(κ)
0 (r)‖2.

(14)

Applying a similar method as that for obtaining (14), we get

another inequality

‖p̂(κ+1)0 (r)− p⋆0(r)‖2

≤ ‖p̃(κ)0 (r)− p⋆0(r)‖2 − ‖p̂
(κ+1)
0 (r)− p̃(κ)0 (r)‖2.

(15)

The inequality (14) shows that p̃
(κ)
0 (r) is closer to p⋆0(r) than

p̂
(κ)
0 (r) and in turn, the inequality (15) shows that p̂

(κ+1)
0 (r)

is closer to p⋆0(r) than p̃
(κ)
0 (r). Hence, the sequence

‖p̂(0)0 (r)− p⋆0(r)‖, ‖p̃
(0)
0 (r)− p⋆0(r)‖,

‖p̂(1)0 (r)− p⋆0(r)‖, ‖p̃
(1)
0 (r)− p⋆0(r)‖, . . .

(16)

is decreasing and converges. Since both sequences p̂
(κ)
0 (r)

and p̃
(κ)
0 (r) converge to p⋆0(r), therefore p⋆0(r) ∈ A ∩B.

In our proof of convergence, we assumed that the intersec-

tion of sets A and B is non-empty, but when measurements

are contaminated by noise, this assumption may not always

be true. In such a case, we need to modify our POCS method

to incorporate a stopping criteria to reach a best solution.

This is still ongoing work to incorporate such a stopping

criteria.

E. Extension to 3D

In this section, we consider a 3D source distribution p0(r)
contained within a 3D ball B2(r0) using a spherical array of

sensors all placed at a radius rs greater than r0. This source

distribution is in a Hilbert space of square integrable function

within the ball i.e., p0(r) ∈ L2(B2(r0)) with the following

inner product

〈p0(r), f(r)〉 ,

∫

Ω∈S2

∫ r0

0

p0(r)f(r) rdr dΩ (17)

where the integration over the 2-sphere S2 is
∫
Ω∈S2(·)dΩ ,∫ 2π

0

∫ π
0
sin θ dθdφ, θ is the elevation, φ is the azimuth and

Ω ≡ (θ, φ).
The spherical Fourier Bessel series

Φnmℓ ,

√
2

r
3/2
0 jn(znℓ)

jn

(
znℓ
r0
r

)
Ynm(Ω) (18)

forms a complete orthonormal basis function for L2(B2(r0))
where jn(·) are the spherical Bessel functions of order n, znℓ
are the ℓth root of jn(·) and Ynm(·) are the spherical har-

monics. Therefore, the source distribution p0(r) is expanded

with this series

p0(r) =

∞∑

n=0

n∑

m=−n

∞∑

ℓ=1

αnmℓΦnmℓ (19)

where the spherical Fourier Bessel coefficients are αnmℓ.
The method introduced in [9] calculates the spherical

Fourier coefficients by applying the spherical Fourier Trans-

form [10] to the aperture at frequencies corresponding to the

spherical Bessel zeros i.e., k = znℓ/r0 and then dividing the

result by a suitable weight.

As before, the measurement bandwidth is finite, hence,

the set of coefficients that can be recovered belong to the

set Λ = {n, ℓ|kl ≤ znℓ/r0 ≤ ku}. Therefore, the pressure

distributions must satisfy the following convex constraint due

to the measured data

〈p0(r),Φnmℓ〉 = α̃nmℓ for ∀{n, ℓ} ∈ Λ (20)

as well as the non negativity constraint. The projection

operators can be defined similar to the 2D case and the

numerical POCS method presented in Section III-C can be

applied for 3D photoacoustic reconstruction.

IV. NUMERICAL EXPERIMENTS

Numerical experiments were conducted to investigate the

improvements in the inversion by applying the proposed

POCS method. These numerical experiments were done for

the 2D case. However, similar results can be obtained for the

3D case.

The numerical phantom used in the simulations is shown

in Fig. 2a. The signals generated by the circular discs were

produced according to the formula described in [11], c =
1500 m/s which is the speed of sound in biological tissue,

r0 = rs = 10 mm. The recorded pressure signals have a

bandwidth from 100 KHz to 1 MHz.
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Fig. 2: (a) Numerical phantom composed of several circular

discs. (b) First reconstruction of the pressure distribution, i.e.

reconstruction obtained from (10).

Noise was added to the generated pressure signals accord-

ing to

SNR = 10 log10

(∫ Ts

0
|p(rref , t)|2 dt
Tsσ2n

)
(21)

where the reference sensor is the sensor placed at a angular

position φ = 0 and Ts is total amount of time for which the

signals are recorded. This time Ts was set to (rs+r0)/c and

20 dB of noise was added to the generated signals.

In the first inversion shown by Fig. 2b, we observe that

large structures are not fully reconstructed since the lower

frequency limit is larger than zero. This first inversion is

similar to that obtained using any of the previously proposed

inversion methods reviewed in [1]. However, the boundaries

of these large structures are present in these reconstructions.

This is because the low frequency components of the numer-

ical phantom cannot be obtained form these measurements.

The resulting reconstruction by applying POCS method

after 10 and 50 iterations are shown in Fig. 3. The POCS

method produces images that are significantly better than

the first reconstruction. Moreover, some of the lost, low

frequency information can be recovered by applying the

POCS method.
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Fig. 3: Resulting reconstruction by applying the proposed

POCS method (a) after 10 iterations and (b) after 50 itera-

tions.

After each iteration, the resulting image gets closer to the

optimum image and to each of the constraint sets. We also

observed that significant improvements occur up to about

10 iterations. Therefore, after a few iterations no significant

improvement in image quality is obtained.

In Fig. 3(b), we observe that there are ring artifacts

present. This is due to the frequency bandlimit of the

recorded acoustic pressure, meaning that only a limited num-

ber of Fourier Bessel coefficients βmℓ of the initial pressure

distribution can be obtained. These ringing artifacts were

removed in [4] by applying a Total Variation (TV) constraint

to the reconstructed image (initial pressure distribution).

V. CONCLUSIONS

In this paper, we have derived a POCS method for

photoacoustic reconstruction which avoids the computation

of an inverse of a large matrix by working in the Fourier

Bessel space. This also leads to faster projections and an

algorithm capable of dealing with the large data sets present

in photoacoustic tomography. With a few iterations of the

POCS method, significant improvements in reconstruction

are obtained together with the recovery of some lost in-

formation. POCS method is a popular technique in other

biomedical imaging modalities, we expect the POCS method

to gain popularity for photoacoustic imaging as well.
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