
Automatic Removal of Manually Induced Artefacts in Ultrasound
Images of Thyroid Gland

Nikhil S. Narayan1, Pina Marziliano1 and Christopher G.L. Hobbs, MD2

Abstract— Manually induced artefacts, like caliper marks
and anatomical labels, render an ultrasound (US) image in-
capable of being subjected to further processes of Computer
Aided Diagnosis (CAD). In this paper, we propose a technique
to remove these artefacts and restore the image as accurately
as possible. The technique finds application as a pre-processing
step when developing unsupervised segmentation algorithms for
US images that deal with automatic estimation of the number of
segments and clustering. The novelty of the algorithm lies in the
image processing pipeline chosen to automatically identify the
artefacts and is developed based on the histogram properties
of the artefacts. The algorithm was able to successfully restore
the images to a high quality when it was executed on a dataset
of 18 US images of the thyroid gland on which the artefacts
were induced manually by a doctor. Further experiments on
an additional dataset of 10 unmarked US images of the thyroid
gland on which the artefacts were simulated using Matlab
showed that the restored images were again of high quality with
a PSNR > 38dB and free of any manually induced artefacts.

I. INTRODUCTION

The diagnosis and treatment of thyroid diseases is based
on the size of the finding in the Ultrasound (US) Image. The
usual procedure is to manually mark, using digital calipers,
the regions of thyroid/nodule having maximum dimensions
and measure the maximum sizes on the US image. Further,
to indicate the region being imaged, a label corresponding to
the anatomical structure is applied on the image. The image
along with the marks are then saved in a storage device for
future use. In this paper, we address the use of these marked
US images in the context of developing Computer Aided
Diagnosis (CAD) algorithms applied to the Thyroid gland.
In the rest of the paper, the caliper marks and the labels will
be referred to as the artefacts and the image region within
which these occur will be referred to as the Region of Interest
(ROI).

The importance of choosing the right type of data for CAD
algorithms has been a topic of much interest since the early
90’s when CAD started to gain momentum with the advent
of new technologies in medical imaging. Nishikawa et al.,
[9] in their paper on case selection for CAD, noted that the
sensitivity of the CAD algorithms dropped to as low as 26%
with the wrong type of dataset used for training and testing.

In our recent work on developing a fully unsupervised
algorithm to segment an US image of the thyroid gland, the
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presence of manually induced artefacts significantly affected
the results of the algorithm [8]. We had developed an algo-
rithm that automatically estimates the number of clusters in
the input US image based on tissue echogenicity, which then
performs segmentation of the US image by classifying the
pixels into the estimated clusters. The presence of manually
induced artefacts resulted in the number of estimated clusters
to be one higher than the actual number of clusters, that
in turn resulted in false positive classification of the pixels
as the algorithm builds a classifier based on the properties
of the pixels in the cluster. This is illustrated in Figure
1, where the pixels representing the soft tissue bordering
the muscles and some pixels of the soft tissue bordering
the thyroid gland have been misclassified as that belonging
to the artefact instead of soft tissue. Speaking in terms of
Ultrasound Nomenclature [3], if the segmentation algorithm
were to detect only the hyperechoic regions in the US image,
then, due to the presence of manually induced artefacts,
the algorithm picks up all the pixels associated with the
artefacts instead of the soft tissue pixels as the artefacts tend
to have a brightness value that mimics the brightness of the
hyperechoic tissue pixels. Although not reported, this can
be a major issue in existing algorithms that use automatic
cluster estimation for US image segmentation like in [1].

With the growing interest in automatic cluster estimation
and cluster validity [4]–[6], [11], [12], and with the focus
of research in Medical Imaging shifting towards developing
applications for e-Health and portable hand held devices [10],
it is only a matter of time before all algorithms tend to
follow an unsupervised model without being restricted for
use just in hospitals and point of care establishments. Under
such circumstances, the algorithms must be robust, capable
of handling any type of data and give reliable results, which
is not possible if the algorithms are developed purely based
on carefully selected datasets like the ones in the databases of
[2] and [7], where any image dataset having image artefacts
is not considered and, if present, are discarded from the
database.

Acquiring any dataset is a time consuming and expensive
process, discarding a dataset would not only be a costly
affair but also tend to make the algorithms developed more
sensitive to artefacts. This brings the need to develop a
robust pre-processing algorithm that can be used to detect
and remove the artefacts, thereby enabling the data to be
used in other CAD applications. It should be noted here
that the purpose of the pre-processing algorithm is to aid in
the development of CAD algorithms and the pre-processed
images cannot directly be used for diagnosis purposes if the
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(a) Input US image (b) ROI (c) Segmented Image

Fig. 1. Automatic cluster estimation and unsupervised segmentation of the ultrasound image of a thyroid gland showing false positive classification of
pixels due to manually induced artefacts.

artefacts are at such regions that affect further diagnosis.
With this in mind, we propose in this paper a technique to

automatically detect the artefacts; remove them and restore
the artefact removed image as accurately as possible. We
claim novelty on the image processing pipeline proposed to
automatically detect the artefacts using the limited amount
of histogram based information available on the artefacts.

II. OUR APPROACH

The flow of the algorithm is shown in Fig.2.

A. Stage 1: Artefact Removal

The first stage in the algorithm is to determine the proper-
ties of the artefacts introduced in the ROI and to suppress the
artefacts. The property of the artefact that we are interested
in is the intensity level as it remains the same for all the
artefacts irrespective of the shape for a given imaging device.

1) Extracting the ROI: Since we are dealing with the arte-
facts present within the ROI, the first task is to automatically
identify the ROI in the m × n input US image denoted by
f(x, y) ∈ [0, 255]. It can be seen from Fig. 3 that the ROI
is the largest component in the whole image. So the binary
image of f(x, y) is obtained by Eq.(1)

b0(x, y) =

{
1 if f(x, y) > 0
0 otherwise . (1)

Applying 2D connected components algorithm on the
binary image b0(x, y) results in a labelled image s(x, y) with
K components, given by

s(x, y) = l; l ∈ [1,K]. (2)

Fig. 2. Flow diagram of the algorithm

Letting lmax to be the label of the component in s(x, y)
with the maximum number of pixels in it, define a binary
mask r(x, y) such that

r(x, y) =

{
1 if s(x, y) = lmax
0 otherwise . (3)

The image containing just the ROI, fr(x, y) and its
complement f̄r(x, y) are given by

fr(x, y) = f(x, y) · r(x, y) (4)

f̄r(x, y) = f(x, y)− fr(x, y). (5)

2) Estimating artefact intensity: Once f̄r(x, y) is ob-
tained, its histogram is plotted. Since f̄r(x, y) is independent
of the ROI, it is very clear that the filled bins of the
histogram directly correspond to the brightness levels of the
artefacts. But it so happens, at times, that some pixels of the
artefacts have brightness values the same as that of soft tissue
brightness in the ROI. Hence assuming that all the filled bins
of the histogram to represent artefact intensity levels will lead
to falsely identifying some tissue pixels as artefacts. In order
to minimize the selection of these false positive pixels, we
divide the gray level range [0,255] into three parts from 0-
100, 101-200 and 200-255 respectively. The histogram peaks
in each of the three parts is taken as the intensity level of
the artefacts. The division of histogram into three levels is
empirical and based purely on the best results obtained on
multiple random trials performed by varying the intensity
ranges.

3) Suppressing artefact intensities: Having estimated the
artefact intensity levels, the next step is to suppress it from
the ROI image fr(x, y), which allows it to be treated as an
irregularly sampled image facilitating the use of a modified
version of the Projection onto Convex Sets (POCS) algorithm
to restore the image (discussed in section II-B).

Let the artefact intensity levels be represented by a thresh-
old set T given by

T = {T1, T2, T3}. (6)
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We define the binary artefact mask ba(x, y) as

ba(x, y) =

{
1 if fr(x, y) ∈ T
0 otherwise . (7)

The binary artefact mask is further subjected to morphologi-
cal operation of dilation with a 3×3 structuring element that
includes the 8-Neighbours of the pixel under consideration.
Dilation is done so that there will not be any step disconti-
nuities when the image is restored.

The final ROI image, g(x, y) with the artefacts removed
is obtained by multiplying the ROI image fr(x, y) with
b̄a(x, y), the complement of the binary artefact mask

g(x, y) = fr(x, y) · b̄a(x, y). (8)

Figure 4 shows the ROI image of Fig. 3, with the artefacts
removed using the method described above. It can be seen
that the machine induced artefacts are completely removed
from the ROI. It is also observed that a few of the tissue
pixels are also removed in the process, but all of these
are restored to a fair degree of accuracy by the restoration
scheme described in section II-B.

B. Stage 2: Image Restoration

A very well established technique to restore images is by
the method of Convex Projections or more commonly known
as Projection onto Convex Sets (POCS) method [13]. In order
to restore the artefact removed pixels in our algorithm, we
follow an approach similar to the one observed in [14], with
a slight modification. Authors in [14] treat the restoration
of the tampered images with watermarks as an irregular
sampling problem and use POCS to iteratively restore the
tampered parts of the image. As in [14], we use the basis
vectors of the cosine transform for projection as it has been
shown that it approximates a given signal better to give good
reconstruction results.

We divide the input image g(x, y) into blocks of size B×
B pixels with a block overlap of B/2 pixels, B > 0, and
apply Block Discrete Cosine Transform (BDCT) to obtain
G(u, v). The first projection operator P1 is given by:

P1f =

{
F (u, v) if u− v < a; 1 < a < B
0 otherwise (9)

where F (u, v) is the BDCT of f(x, y). The significance
of the projection in Eq. (9), is for the projection operator
to act as a low pass filter to obtain a B band-limited image
block.

Let4 denote the set of all pixels that were removed during
the artefact removal process. Then the second projecton
operator P2 is given by:

P2f =

{
f(x, y) (x, y) ∈ 4
g(x, y) (x, y) /∈ 4 . (10)

The image is iteratively restored using the relation:

f (n+1) = P2P1f
(n) (11)

Fig. 3. Input 2D Ultrasound Image f(x, y) of the thyroid gland having
artefacts.

Fig. 4. ROI Image fr(x, y) with artefacts removed.

Fig. 5. Restored image f̃ (x,y).

with
f (1) = P2P1g. (12)

Figure 5 shows the final output f̃(x, y) after artefact
removal and restoration using the proposed POCS method.

III. RESULTS AND DISCUSSION

The proposed algorithm was implemented using Matlab
2008 and was executed on a dataset of 18 ultrasound images
of the thyroid gland. Each image had at least one nodule with
caliper marks and text material within the ROI. The images
were acquired using Hitachi HI Vision Avius Ultrasound
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Case Number 1 2 3 4 5
Average PSNR 39.78 40.48 38.94 39.62 39.67
Case Number 6 7 8 9 10
Average PSNR 39.02 40.33 40.11 41.06 40.91

TABLE I
RESTORATION QUALITY ANALYSIS

(a) Input (b) Output

Fig. 6. Restoration of a US image randomly downloaded from the internet

device and processed offline on an Intel(R) Core(TM) i5-
2400 CPU @ 3.10GHz computer.

For the POCS algorithm, BDCT was performed on image
blocks of size 64×64 pixels with a block overlap of 32 pixels
and B=16. In order to qualitatively measure the performance
of the proposed scheme, an additional 10 US images of the
thyroid gland were acquired without any artefacts. Artefacts
in the form of text material were introduced at random
locations within the ROI of the image and was subjected
to artefact removal and restoration. PSNR was calculated on
the restored image to measure the quality of restoration. The
simulation was carried out 50 times, with artefacts embedded
at random locations in each simulation, on each image in the
dataset. Table I shows the average PSNR value for all the
images in the dataset. It can be seen that the images have
PSNR values greater than 38dB indicating the high quality
of restoration.

Apart from measuring the PSNR values, a subjective anal-
ysis was also performed; where the participant pool (n=17),
that included clinicians and medical imaging researchers, was
asked to give a rating on a scale of 1-5, indicating their
opinion on the quality of restoration on the 18 images in the
dataset. A score of 1 was given when a participant strongly
agreed that all of the artefacts were removed and a score
of 5 was given when a participant strongly disagreed that
the artefacts were removed. The results showed that for 8
out of the 18 cases, the participants strongly agreed that the
artefacts were completely removed in the restored image; the
participants somewhat agreed that the artefacts were removed
for 8 out of 18 cases, while the participants neither agreed
nor disagreed on the artefact being removed for 2 of the 18
cases.

The algorithm was also run on a random ultrasound image
downloaded from the internet to check the generality of the
algorithm. Figure 6(a) shows an ultrasound image of a foetus
with an arrow mark, given as input to the algorithm. Figure
6(b) shows the output of the algorithm where most of the

artefact has been removed by the algorithm. The algorithm,
in general, was able to fully suppress those artefacts that were
present at locations having smooth transitions of tissue gray
levels and restore the image without any trace of the artefacts.
The artefacts that were present at the locations of sudden
gray level discontinuities, like edges of cystic nodule walls
etc., were suppressed fully in the first stage, but restoration
process resulted in a smooth gray level profile, instead of a
sharp edge, at the locations where the artefact was present .
This is due to the first projection operator which acts as a low
pass filter, essentially producing a blurring effect during the
restoration process. In both of the above mentioned cases, the
artefacts had an arbitrary but constant intensity value. The
algorithm failed to suppress those artefacts that did not have
a constant intensity level and hence these were still present
even after the restoration process.

In conclusion, we have developed an algorithm that auto-
matically detects manually induced artefacts in an ultrasound
image and restores the image as accurately as possible with a
high quality so long as the artefacts have a constant intensity
level and are embedded at locations having a smooth gray
level profile.
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