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Abstract— We propose a top-down fully automatic 3D verte-
bra segmentation algorithm using global shape-related as well
as local appearance-related prior information. The former is
brought into the system by a global statistical shape model
built from annotated training data, i.e., annotated CT volumes.
The latter is handled by a machine learning-based component,
i.e., a boundary detector, providing a strong discriminative
model for vertebra surface appearance by making use of local
context-encoding features. This boundary detector, which is
essentially a probabilistic boosting-tree classifier, is also learnt
from annotated training data. Contextual information is taken
into account by representing vertebra surface candidate voxels
with high-dimensional vectors of 3D steerable features derived
from the observed volume intensities. Our system does not
only consider the body of the individual vertebrae but also the
spinal processes. Before segmentation, the image parts depicting
individual vertebrae are spatially normalized with respect
to their bounding box information in terms of translation,
orientation, and scale leading to more accurate results. We
evaluate segmentation accuracy on 7 CT volumes each depicting
22 vertebrae. The results indicate a symmetric point-to-mesh
surface error of 1.37 ± 0.37 mm, which matches the current
state-of-the-art.

I. INTRODUCTION

Accurate vertebra segmentation in computed tomography
(CT) images is important for numerous medical applications,
e.g., diagnosis of osteolytic or osteoblastic cancer metastases
within the spinal column [10], diagnosis of lung nodules
[12], and detection of osteoporosis [1]. Accurate knowledge
of the shape of the individual vertebrae is also important
for spinal biopsies, implants, or the insertion of pedicle
screws in spinal surgery [11]. However, manually delineating
and annotating vertebrae is a subjective, tedious, and error
prone task. Preparing an automatic vertebra segmentation
system would greatly improve the process, thereby easing
the workload on radiologists while also removing operator
variability.

Automatic vertebra segmentation in CT images is a
challenging task due to the presence of image artifacts,
contrast variations, presence of neighboring structures, and
shape variation [11]. Recently, a considerable amount of
work has been done toward preparing automatic systems
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for detection and segmentation of vertebrae. In this work,
we mainly focus on the segmentation task (rather than
detection). In the following, we start by preparing a brief
review on the state-of-the-art regarding the segmentation
step. In Sec. III, we explain in detail how we extract
statistical shape information and train the boundary detector
using annotated data (Sec. IV). In Sec. V, we prepare
qualitative and quantitative results of our method and
compare them with the results achieved by a standard
graph cut (GC)-based vertebra segmentation approach and
a GC-based approach considering a shape prior [1].

II. PREVIOUS WORK

We classify the existing vertebra segmentation approaches
to two main groups: i) the ones, which do not consider shape
prior information, and ii) the ones, which do.

Regarding the first group, we can point to the following
works: Ghosh et al. [5] extract the vertebra border as high
gradient edges. Peng et al. [14] apply the Canny edge
detector on 2D slices for vertebra segmentation. Aslan et al.
[2] utilize a level set algorithm for vertebra segmentation.
However, these methods [5], [14], [2] do not make use of
shape prior knowledge. Therefore, they are vulnerable to
leakage and thus lead to less accurate segmentation results.

Considering the second group, there exist several vertebra
segmentation methods which make use of shape prior in-
formation. Aslan et al. [1] consider shape prior information
in a graph cut-based framework. Ma et al. [12] propose a
template-based segmentation method. However, these meth-
ods only rely on mean shape information and do not benefit
from the principal modes of variation. Herring et al. [8]
compute a coarse segmentation by simple thresholding and
then register it to a pre-computed vertebra shape model.
However, their method requires a manual initialization; sim-
ilar to the works in [13] and [18]. Klinder et al. [11] propose
a model-based segmentation approach using a region-based
appearance model, which includes variance information.

III. METHOD

The general pipeline of our method is shown in Fig. 1.
The input to our system is a 3D CT image of the spinal
cord accompanied with vertebra-bounding box information.
These bounding boxes, which are represented by their cen-
ter, orientation, and scale, can be estimated by applying a
vertebra body detection as proposed by Kelm et al. [10].
Combining our method with this method would lead to a
fully automatic vertebra detection and segmentation system,
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Fig. 1. The block diagram of our proposed 3D vertebra segmentation method.

which does not require any user interaction. Our method
combines statistical shape modeling (SSM) to capture global
vertebra shape information and machine learning (ML) to
capture local appearance-related prior information. We break
down our method into two main steps: the training step and
the testing step. In the training step, we compute the SSM
and the boundary detector model. In the testing step, we
make use of the trained models resulting from the previous
step to segment vertebrae in an unseen image accompanied
with its vertebra bounding box information.

A. Training Step

The training step of our framework consists of four
main steps: i) finding the mesh point correspondences, ii)
normalizing the meshes and volumes, iii) extracting the SSM,
and iv) learning the boundary detector. Note that we do the
learning step on cervical (V1 to V5), thoracic (V6 to V17), and
lumbar (V18 to V22) parts separately, where Vi represents
the vertebra number. In Fig. 2(b) the vertebrae inside the
cervical, thoracic, and lumbar parts are represented by pink,
green, and orange, respectively.

1) Finding Mesh Point Correspondences: Since extracting
a SSM requires a set of training shapes with well-defined
correspondences [7], we apply a spectral-based algorithm to
compute these correspondences between the vertebra meshes
[9]. In the respective block in Fig. 1, corresponding points
between a pair of meshes are represented with the same
color. Note that in our implementation of finding mesh-point
correspondences, we use vertebrae V3, V12, and V20 of one
patient in the training set as the reference meshes for cervical,
thoracic, and lumbar parts and register all other meshes of
each group to them.

2) Normalizing Meshes and Volumes: The next step as
depicted in Fig. 1 is performing spatial normalization on the
vertebra volumes and meshes. Regions within the bounding
boxes are spatially normalized to image volumes with equal
size, resolution, and orientation. The spatial normalization
step is important in our machine learning-based approach.
Extracting 3D steerable features from these normalized vol-
umes simplifies learning due to more stable appearance
patterns of the vertebra edges. A similar normalization step

has been proposed by Wels et al. [16] to extract local features
from vertebral bodies for spinal bone lesion detection. We
apply the same normalization step (normalizing w.r.t. the box
information) to the meshes. The normalized meshes are used
for extracting the SSM, as explained in the following.

3) Extracting the SSM: After finding correspondences and
normalizing the meshes, we apply Generalized Procrustes
Analysis (GPA) [6] to align the meshes rigidly. Let us
represent aligned meshes by x1, x2, ..., xN , N ∈ N+, where
xi consists of the spatial coordinates of the surface points of
the meshes. Then, the mean shape x̄ and the corresponding

covariance matrix S is given by: x̄ =
N∑
i=1

xi/N, S =

N∑
i=1

(xi− x̄)(xi− x̄)T . By applying eigendecomposition on S,

we can extract principal modes of variation φm (eigenvec-
tors) and their respective variance λm (eigenvalue). Based
on the main concept of SSM theory, each shape in the
training dataset can be approximated by a linear combination
of the first mth modes, i.e. given by: x ≈ x̄ + Pb, where
P = (φ1, .., φm) is the matrix of the m selected eigenvectors,
and b = (b1, ...bm)T are the shape parameters [4].

4) Learning the Boundary Detector: To learn the
boundary detector, given the normalized meshes and
volumes, the image voxels on the mesh surface are
interpreted as positive training samples. Then, a set of
3D steerable features is extracted from the points on the
surface [19]. The same set of features is extracted from
several neighboring sampling points along the normal line
of the mesh surface points providing negative training
samples [19], [17]. These feature vectors are used to train
the boundary detector using a Probabilistic Boosting-Tree
Classifier [19], [17].
B. Testing Step

Given an unseen image with its vertebra bounding box
information, we first spatially normalize the volumes inside
the box. On the normalized volumes, an initial estimation of
the shape of the vertebra x is estimated using the computed
mean shape x̄, i.e., x ← x̄. Then, a set of steerable features
is extracted from the mesh points x and several neighbouring
sampling points along the normal line of the mesh-surface
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(a) (b) (c)
Fig. 2. (a) Example CT image with the overlaid vertebra bounding
boxes (yellow boxes). (b) Overlaid vertebra meshes resulting from
our method. The vertebrae inside the cervical, thoracic, and lumbar
parts are represented by pink, green, and orange, respectively.
Computed mean shapes of vertebrae in: cervical, thoracic, and
lumbar groups are shown in (c).

points. After applying the boundary detector to the extracted
feature vectors, x is updated by a displacement vector ∆x =
(∆x1,∆y1,∆z1, ...,∆xn,∆yn,∆zn)T . To apply shape con-
straints on the updated mesh x ← x + ∆x, it is registered
to the SSM model space and projected such that it can be
approximated by the mean shape and a linear combination
of eigenvectors [4] (see Sec. III-A.3).

As shown in Fig. 1, the final estimation of all the vertebrae
in the original image space is made by projecting back
the detected meshes in the normalized space to the original
image space.

IV. MATERIAL

We evaluate our method on CT images of 7 patients. Each
image depicts 22 vertebrae. The plain resolution of the im-
ages varies between 0.78 and 0.97 mm with a slice thickness
between 2.0 to 2.5 mm. Images are of size 512x512 voxels
in-plain with 296 to 486 voxels in z direction. Groundtruth
meshes were prepared manually.

In total, there were 154 spatially normalized single ver-
tebra volumes available for shape model generation and
training boundary detectors. Our system is implemented in
C++ and the experiments have been carried on an Intel Core
2Duo CPU (2.6 GHz). Parts of our system were rapidly
prototyped using an Integrated Detection Network (IDN)
[15].

V. RESULTS

We perform leave-one-patient-out cross validation (CV)
on the data collection: given the 6 CT images in each CV-
training, we compute 3 shape models for cervical, thoracic,
and lumbar vertebrae. Examples of the computed mean
shapes are shown in Fig. 2(c). Afterwards, we train boundary
detectors on the cervical, thoracic, and lumbar vertebrae.
Finally, we apply our segmentation method on the image,
which was excluded from the training dataset. Examples of
segmented vertebrae resulting from our method are shown
in Fig. 2(b).

A qualitative comparison between the segmented meshes
resulting from our method compared with the standard graph

(a) GC (b) GC+SP (c) Ours

Fig. 3. Example detected mesh resulting from: (a) GC [3], (b)
GC with shape prior [1], and (c) our method. The groundtruth
and segmented meshes are represented by yellow and orange color,
respectively. The first and second rows represent axial and sagittal
views, respectively.

cut (GC) algorithm [3], and the GC-based algorithm consid-
ering a shape prior [1], is shown in Fig. 3. Using a shape
prior with GC significantly reduces leaking as compared to
plain GC. The more precise shape model employed in our
work, however, yields even better results.

For a quantitative evaluation, we measure the error of the
segmented meshes compared with the groundtruth meshes
in terms of the symmetric point-to-mesh distance, which
is a widely used criterion [11]. In Tab. V, we report the
errors resulting from the GC-based method considering the
shape prior, GC+SP [1], our SSM and ML based ap-
proach without and with spatial normalization, SSM+ML and
SSM+ML+Norm, respectively. As it can be seen, averaged
over all the datasets, the minimum error 1.37± 0.37 mm is
achieved by SSM+ML+Norm. Comparison between the error
resulting from SSM+ML and SSM+ML+Norm highlights the
importance of extracting feature vectors from spatially nor-
malized volumes for the learning-based boundary detector.
To measure the sensitivity of the method with respect to the
box information, we measure segmentation accuracy using
perturbed box information in the following range: 5 mm
in xyz-translations and xyz scales, and 2◦ in orientation.
The results in the last row of Tab. V indicate that we
almost achieve the same accuracy using the perturbed box
information.

Note that Klinder et al. [11] report to have 1.12±1.04 mm
error evaluating on their own dataset. A numerical compari-
son between the error resulting by our method compared with
[11] indicates that our method has less standard deviation
while only having a slightly higher mean error. Further, the
running time of the segmentation step over the thoracic part
is reported as 3 min in [11], where ours is about 2 min.

VI. CONCLUSION

We proposed a fully automatic 3D vertebra segmentation
algorithm using statistical shape modeling and a machine
learning-based boundary detector. The SSMs were extracted
from annotated training data and the boundary detector were
trained over a set of 3D steerable features, which were ex-
tracted from the normalized volumes. Our system considers
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Cervical Thoracic Lumbar All
GC+SP 7.9± 7.9 6.3± 6.4 3.9± 5.8 6.1± 6.7
SSM+ML 2.2±0.7 1.8±0.6 1.6±0.4 1.8±0.6
SSM+ML+Norm 1.4±0.4 1.3±0.3 1.3±0.3 1.3±0.3

SSM+ML+Norm∗ 1.6±0.6 1.7±0.7 1.3±0.5 1.6±0.7

TABLE I
VERTEBRA SEGMENTATION ERROR IN TERMS OF THE

POINT-TO-SURFACE ERROR ON 7 CT IMAGES EACH CONSISTING

OF 22 VERTEBRAE (154 VERTEBRA VOLUMES IN TOTAL). THE

RESULTS ARE REPORTED FOR THE GC-BASED METHOD

CONSIDERING SHAPE PRIOR INFORMATION, GC+SP [1], AND

OUR METHOD WITHOUT AND WITH NORMALIZATION, SSM+ML
AND SSM+ML+NORM, RESPECTIVELY. NOTE THAT THE

MINIMUM ERROR IS ACHIEVED BY SSM+ML+NORM. THE LAST

ROW, SSM+ML+NORM∗ , REPRESENTS THE RESULTS WHEN WE

PERTURB THE VERTEBRA BOX INFORMATION (5 mm IN

XYZ-TRANSLATIONS AND XYZ SCALES, AND 2◦ IN

ORIENTATION).

the bodies of the individual vertebrae as well as the spinal
processes. The evaluation results on real data indicate that
our method is compatible with the state-of-the-art. Applying
the boundary detector in [19] and extracting features from the
spatially normalized images lead to a more accurate method.
Towards preparing a fully automatic vertebra segmentation
algorithm, we aim to combine our method with the detection
method in [10]. We computed three separate shape models
for cervical, thoracic, and lumbar parts. To this end, we apply
a spectral-based mesh point matching method [9] to find
mesh point correspondences. As our future work, we aim
to apply groupwise point registration algorithms [7], which
may lead to more accurate correspondences and as a result
more accurate SSM information.
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