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ABSTRACT

Application of content-based image retrieval (CBIR) to medical im-

age analysis has recently become an active research field. While

many previous studies have focused on the feature design, the met-

ric design, another key CBIR component, has not been well inves-

tigated in this application context. This paper presents a medical

CBIR that adapts its similarity metric from data by using information

theoretic metric learning. Also we systematically compare our SIFT

bag-of-words-based system with various plug-in similarity measures

available in literature. The proposed systems are evaluated with the

ImageCLEF-2011 benchmarking dataset. Our experimental results

demonstrate the advantage of the proposed metric learning approach

and L1 distance-based measures.

1. INTRODUCTION

In recent years, an application of content-based image retrieval

(CBIR) [1, 2] to medical image analysis has become an active re-

search field. Such medical CBIR (M-CBIR) focuses on retrieving

medical images similar to a single or a set of query images without

using semantic annotations and can be applied to various decision

support problems in pathology and radiology [3]. Typically a M-

CBIR involves a two-step procedure of feature extraction followed

by similarity comparison, both of which are equally important for

successful applications. Previous work on CBIR has led to the de-

velopment of various feature designs, such as SIFT [4], SURF [5]

and Gabor wavelets [6]. Despite the relative maturity of these fea-

ture designs, similarity measures in CBIR have not been investigated

thoroughly. Previous studies on metric design in CBIR [7, 8, 9] are

still few and the lack is especially evident for M-CBIR.

Addressing this shortcoming, we present our investigation on

metric design for an M-CBIR application. Our contributions are

two-fold. First, we propose an in-house M-CBIR system with in-

formation theoretic metric learning [10] that adapts its similarity

measure according to known relevance side-information. Second,

we report a comparative study with a comprehensive list of similar-

ity measures of many types using a large dataset. Our experimental

evaluation employs a public bench marking dataset available from

ImageCLEF-2011, which includes various types (e.g., tomographic

images, compositions, plots etc) of 2D digital photographs derived

from figures in Radiology journal documents. Our results demon-

strate the advantage of our metric learning approach and ofL1-based

measures that we tested.

This paper is organized as follows. Section 2 presents our metric

learning method and other technical components of M-CBIR meth-

ods evaluated in this study. Section 3 outlines our experimental

study: data, experimental design, and the results. Finally, Section

4 discusses our study’s result and potential future work.

2. M-CBIR METHOD

2.1. Feature Design

A feature vector is extracted from each image in the well-known bag-

of-words (BoW) scheme [11] with SIFT features [4] as described

below.

Given a training dataset, we first construct a K-word codebook

by 1) identifying and extracting SIFT features from all images in the

dataset and 2) creating K representative features via K-means clus-

tering over the extracted SIFT features. We use the standard algo-

rithm for SIFT feature extraction, yielding a 128-element histogram

of local gradient directions for 8 orientations in 16 tiles. We include

4 extra parameters of the 2 spatial coordinates of the SIFT keypoint,

the scale parameter, and the dominant-orientation parameter, mak-

ing the total dimension of our feature vector to be 132. Each SIFT

feature vector is centered and normalized using Z-Score transform,

and we randomly initializeK centers for the K-means clustering.

Given this codebook, the BoW method extracts a feature vector

of length K for each new image by 1) performing the same SIFT

feature extraction and 2) constructing a normalized histogram rep-

resenting the frequency distribution of the extracted SIFT features

with respect to the codebook. For each feature, we find the nearest-

neighbor best match among the K representative codebook vectors

that is closest to the input feature in Euclidean distance. Finally, we

perform a number of standard feature transformation such as PCA

and TF-IDF, for better retrieval performance.

We consider two types of post-extraction feature transforma-

tion: principal component analysis (PCA) [12] and term frequency-

inverse document frequency (TF-IDF) [13]. PCA is a standard di-

mension reduction method which computes an eigen subspace of

(BoW) feature vectors derived from the training dataset. Each new

feature vector is then projected onto this subspace before similar-

ity comparison. TF-IDF originally comes from textual data mining,

whose goal is to penalize common words (i.e., codebook feature vec-

tors) across the training dataset. The BoW feature vector described

above corresponds to TF. IDF is computed for each codebook vector

as an inverse frequency of training images that include the code-

book vector as a match. Each new feature vector is then multiplied

with the resulting IDF filter. We experiment with four types of fea-

ture transformation including combinations of PCA and TF-IDF: 1)

PCA(·), 2) TF-IDF(·), 3) PCA(TF-IDF(·)), and 4) TF-IDF(PCA(·)).

2.2. Database Ranking by Similarity Comparison

Given a query image, the goal here is to rank database images ac-

cording to their distance or similarity to the query. In some cases

a query may consist of multiple images. In this case, we calculate

the average similarity of the query set to each database image and

use this average for the ranking. Many standard similarity measures
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exist, but most take the form of a distance/dissimilarity measure in

their natural expression except for some rare cases (e.g., cosine sim-

ilarity). When considering a dissimilarity measure d(x, y), we cal-

culate similarity with its additive inverse by 1−d(x, y) where x and

y are appropriately scaled so that d(x, y) ∈ [0, 1]. We also abuse

the term metric to indicate both similarity and dissimilarity mea-

sures in this paper. Strictly speaking, a metric is a distance function

that satisfies three conditions of positive definiteness (d(x, y) ≥ 0;
d(x, y) = 0 iff x = y), symmetry (d(x, y) = d(y, x)), and the

triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). However, some

standard dissimilarity measures we considered violate these condi-

tion (e.g., Kullback-Liebler divergence is not symmetric).

2.3. Metric Design by Learning

Metric Learning [14] is the process of adapting a metric of a set S
according to side-information about the similarity or dissimilarity

of some known datapoints in S. Let x = (x1, .., xn) represent the

query image and y = (y1, .., yn) represent another image against

which to be compared. Let λ denote an n-dimensional vector in

which λi determines the weight given to the i-th feature xi ∈ x.

A weighted L2 metric on S can then be defined as dλ(x, y) =
√

∑N
i=1 λi(xi − yi)

2,∀x, y ∈ S. A more general form is given

by Mahalanobis distance,

dA(x, y) = ||x− y||A =
√

(x− y)TA(x− y) (1)

where A is a symmetric, positive semi-definite matrix and λ =
diag(A).

One idea of metric learning is to learn the appropriate weights

λ or A from training data [14]. Different approaches have been re-

ported in literature for such metric learning [15].

We adopt information theoretic metric learning (ITML) [10] in

our M-CBIR system. ITML is a popular metric learning algorithm

that uses an information-theoretic cost model which iteratively

enforces pairwise similarity/dissimilarity constraints, yielding a

learned matrix A of the Mahalanobis distance as an output.

The Mahalanobis distance is a bijection to a Gaussian distribu-

tion with its covariance set as an inverse of A. Exploiting this bijec-

tive property, ITML poses the metric learning problem as a convex

optimization of a relative entropy between a pair of Gaussian dis-

tributions with the unknown A and the identity matrix I under the

similarity/dissimilarity constraints,

min
A≻0

KL(p(x;m, A)||p(x;m, I)) (2)

Subject to: dA(xi,xj) ≤ u (i, j) ∈ S

dA(xi,xj) ≥ l (i, j) ∈ D

where S and D are the sets of similar and dissimilar points, respec-

tively. This formulation regularizes the optimization problem so as

to seek a metric that satisfies the given constraints and is closest to

the Euclidean distance.

Davis et al. [10] demonstrated the equivalence of this metric

learning formulation and low-rank kernel learning problem [16],

yielding an efficient solution to the problem in (2) based on Breg-

man’s method [17]. This dual ascent optimization method iteratively

projects onto one constraint at a time with a closed-form projection

update without a need of numerical eigenvalue decomposition and

is thus efficient.

Note that a pairwise distance computation by Eq.(1) can also

be realized by first performing a linear transformation S 7→ T =

A1/2S and by computing the L2 distance for the pair in T . This lin-

ear transformation makes similar datapoints in S closer together and

dissimilar datapoints farther apart in T and yields more computation-

ally efficient pairwise distance computation. Adopting this property,

we treat the ITML’s result A as a post feature transformation and

evaluate it with different similarity measures in our experiment.

2.4. Standard Similarity Measures

The subjectivity inherent to the idea of similarity is reflected in the

varying types of similarity measures which can be defined. Let x̄
represent the mean value of x and ȳ that of y, while µ denotes an

average of x and y: µ = x+y

2
. Further, let X and Y represent the cu-

mulative distributions of x and y when they are considered as prob-

ability distributions (
∑n
i=1 xi =

∑n
i=1 yi = 1), respectively. That

is X = (X1, ..., Xn) where Xj =
∑j
i=1 xi and similarly for Y

and y. We use z = (z1, z2, · · · , zn) and z(l) to denote the l-times

iteratively Gaussian-smoothened, then 2-downsampled vector rep-

resentation of |X − Y|. The following list of various similarity or

dissimilarity measures were considered in our study.

L
2(x, y) =

√

(x− y)t(x− y) (3)

L
1(x, y) =

n
∑

i=1

|xi − yi| (4)

L
∞(x, y) =

n
max
i=1
|xi − yi| (5)

CO(x, y) =
x · y

‖x‖‖y‖
(6)

CC(x, y) =

∑n
i=1 (xi − x̄)(yi − ȳ)

√
∑n
i=1 (xi − x̄)

2(yi − ȳ)2
(7)

CS(x, y) =
n
∑

i=1

(xi − µi)
2

µi
(8)

KL(x, y) =
n
∑

i=1

xi log
xi

yi
(9)

JF (x, y) =

n
∑

i=1

xi log
xi

µi
+ yi log

yi

µi
(10)

KS(x, y) =
n
max
i=1
|Xi − Yi| (11)

CvM(x, y) =

n
∑

i=1

(Xi − Yi)
2

(12)

EMD-L
1(x, y) =

n
∑

i=1

|Xi − Yi| (13)

DD(x, y) =

log
2
n

∑

i=1

n/2j
∑

j=1

z
(j)
i (14)

where L2: Euclidean distance, L1: cityblock distance, L∞: infinity

distance, CO: cosine similarity, CC: Pearson correlation coef-

ficient, CS: Chi-square dissimilarity [9], KL: Kullback-Liebler

divergence [9], JF : Jeffrey divergence [9], KS: Kolmogorov-

Smirnov divergence [9], CvM : Cramer-von Mises divergence [9],

EMD-L1: earth movers distance with L1 ground distance [18]

(EMD in 1D feature space is equivalent to the Mallows Dis-

tance [19]),DD: diffusion distance [20].
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3. EXPERIMENTS

3.1. Data

We use datasets made available by ImageCLEF [21]. ImageCLEF

has offered standardized benchmark tests for a variety of language-

neutral CBIR tasks since 2003. The data used in our experiments are

from the medical image retrieval task of the ImageCLEF competition

administered in 2011 [22]. Three types of datasets were available for

this study: training, query, and relevance judgment.

Training data consist of 230, 088 images taken from Pubmed

Central database (www.ncbi.nlm.nih.gov/pmc/) that con-

tains more than 1 million images taken from published medical

journals’ figures. Images are therefore of a diverse set of types

including those that have little relevance to our retrieval task, as

shown in Figure 1. Query data consist of 30 distinct queries, each

of which consists of 1-3 query images. These query images are of

standard medical image types of different modalities and field of

views. Some examples are shown in Figure 2.

Relevance judgment data provides our ground-truth information

used in both metric learning and performance evaluation. For each

query, a subset pool of the entire data set was first collected from the

top N matches of an existing M-CBIR system by ImageCLEF or-

ganizers. These pooled images are then manually judged by physi-

cians and medical students at Oregon Health and Science University

using a web-based GUI tool to be either relevant or irrelevant. All

images not in the pool are judged to be irrelevant. For all queries,

these relevance scores are computed for all training images, without

annotating the images, and stored in a file.

Fig. 1. Various training images for ImageCLEF-2011 displaying

their diversity. Modalities of these images are, respectively: optical,

CT, MRI, X-ray, ultrasound, DXA, graphical, optical and mixed.

3.2. Performance Evaluation Measure

Mean average precision (MAP) is used as a measure to quantify per-

formance of our M-CBIR systems. MAP is a popular performance

Fig. 2. Examples of query images for ImageCLEF-2011.

measure in the information retrieval field, and is defined as the aver-

age of per-query precisions,

MAP =
1

Q

Q
∑

q=1

pµ(q) (15)

where Q is the number of queries and

pµ(q) =
1

Rq

n
∑

k=1

P (k) · rel(k) (16)

where P (k) is the precision at the k-th image, Rq is the number

of retrieved images which are relevant to the q-th query, rel(k) is a

binary indicator function for relevance or lack thereof, and n is the

total number of images retrieved for the q-th query.

3.3. Results

We evaluate the MAP score of our ITML systems in comparison with

the twelve standard similarity measures applied on the four types

of post feature transformations. We set the codebook size K to be

1000, following the previous M-CBIR report using similar feature

design [23]. We did not observe benefits in learning a fully parame-

terized A in our pilot study and so, for computational simplicity, we

utilize a metric learning formulation with a diagonal A.

Table 1 summarizes the resulting MAP scores. The highest

scores of 0.0227 were achieved by the proposed ITML transforma-

tion with the L1 and diffusion distances. The next highest scores of

0.0214 were achieved withL1 and diffusion distances without using

any post feature transformation. Among the cases with post feature

transformations, TF-IDF(PCA) performed best at 0.0209 with the

correlation coefficients used as similarity measure.

4. DISCUSSION

This paper proposed a metric learning-based medical CBIR method

and presented a systematic experimental comparison of various sim-

ilarity measures by using a large public database. Our experimental

results demonstrated an advantage of the proposed ITML approach

which outperformed other CBIR metrics we tested.

In ImageCLEF’s medical image retrieval task in 2011, the

best MAP score achieved by using only visual information was

0.0338 [22]. Our ITML-based score would have been at the 10th
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Measure Data Transformation

None PCA75 PCA200 PCA500 PCA TF-IDF(PCA) TF-IDF PCA(TF-IDF) ITML

L2 0.0169 0.0207 0.0168 0.0194 0.0203 0.0208 0.0157 0.0172 0.0126

L1 0.0214 0.0183 0.0091 0.0196 0.0182 0.0180 0.0207 0.0180 0.0227

L∞ 0.0029 0.0032 0.0011 0.0012 0.0029 0.0016 0.0034 0.0097 0.0023

CO 0.0169 0.0207 0.0168 0.0194 0.0203 0.0208 0.0157 0.0173 0.0126

CC 0.0184 0.0207 0.0168 0.0194 0.0203 0.0209 0.0201 0.0172 0.0185

CS 0.0133 0 0 0 0 0 0.0163 0 0

KL 0.0004 0 0 0 0 0 0.0004 0 0

JF 0 0 0 0 0 0 0.0008 0 0

KS 0.0010 0.0176 0.0003 0.0020 0.0107 0.0176 0.0008 0.0008 0.0005

CvM 0.0011 0.0047 0.0017 0.0014 0.0091 0.0104 0.0009 0.0008 0.0006

EMD-L1 0.0011 0.0031 0.0016 0.0014 0.0089 0.0098 0.0009 0.0006 0.0006

DD 0.0214 0.0183 0.0091 0.0196 0.0140 0.0137 0.0207 0.0177 0.0227

Table 1. Result of similarity measure comparison using the MAP score with ImageCLEF 2011 data. None: without feature transformation.

PCAM : codebook constructed using the first M principal components. PCA: all principal components. TF-IDF(PCA) is the TF-IDF

transformation of the PCA transformed data. PCA(TF-IDF) is the PCA transformation of the TF-IDF transformed data. ITML is A1/2S
where A is a covariance of Mahalanobis metric learned for S. Bold-typed numbers indicate the best performing combinations.

place among 26 submissions in the competition. These scores

were relatively much lower than retrieval performance with text

annotative information exploited, indicating difficulty of the visual

M-CBIR task we tackled.

Note also that the best performing standard metrics in our exper-

iment were both based on the L1 metric since the diffusion distance

is also based on L1. This seems sensible because L1 distance tends

to outperform L2 distance in a high-dimensional space. Since over-

fitting in our metric learning was a concern, we chose to alleviate

this by using a simpler form of the metric, forcing A to be diagonal.

A small difference in the MAP score between the ITML results and

the others supports this choice.

As a future work, we plan to improve the overall retrieval per-

formance by improving our feature design and to compare different

metric learning algorithms to better understand the role of metric

design in this M-CBIR application.
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