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Abstract— We present an automated algorithm for the de-
tection of blood vessels in 2-D choroidal scan images followed
by a measurement of the area of the vessels. The objective
is to identify vessel parameters in the choroidal stroma that
are affected by various abnormalities. The algorithm is divided
into five stages. In the first stage, the image is denoised to
remove sensor noise and facilitate further processing. In the
second stage, the image is segmented in order to find the
region of interest. In the third stage, three different contour
detection methods are applied to address different challenges
in vessel contour. In the fourth stage, the outputs of the three
contour detection methods are combined to achieve refined
vessel contour detection. In the fifth and final stage, the
area of these contours are measured. The results have been
evaluated by a practicing opthalmologist and performance of
the algorithm relative to expert detection is reported.

I. INTRODUCTION
The choroid acts as a connective tissue to the retina and

sclera and supplies blood to these areas. It plays a crucial
role in oxygenation and metabolic activity of the eye [1]. It
has two parts i) Choriocapillaris ii) Choroidal stroma [2]. The
choroidal stroma has blood vessels along with melanocytes,
fibroblasts, immune cells, neurons, and ground substance. It
is well known that the onset of disease or ageing changes
the structure of the choroidal stroma, particularly vessel
thickness and volume [3], [4]. To observe the changes in
choroid with disease or ageing optical coherence tomography
(OCT) imaging is considered as a useful tool [5], [6]. How-
ever, presence of speckles, low contrast and high absorption
of light makes an OCT image difficult to understand [7].
Methods of characterization of choroidal structure are still
being developed with several automated and manual image
enhancement methods being proposed [8], [9]. The proposed
algorithm is closest in its goal and philosophy to the work
by Zhang et. al. [9]. However, in this paper, we work with
2-D images and address the challenges presented therein.
We propose a new 2-D automated approach for evaluation
of the choroidal vessels from the spectral domain (SD)-OCT
images and compare the outcomes with manual outcomes for
its reliability.
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The paper is organized as follows. Section II formulates
the problem in terms of the challenges involved. Section III
discusses the proposed algorithm in detail and results are
presented in section IV. Section V concludes the paper and
discusses directions for future work.

II. PROBLEM FORMULATION

As mentioned in section I, the primary goal of this work
is to automatically detect and measure the size of blood
vessels present below the choroid. The challenges involved
are described in the following with the aid of a typical
choroidal scan image acquired using OCT as shown in Fig.
1. Due to the nature of the acquisition process in OCT [10],
noise is inherent to choroidal scan images. The presence
of noise is detrimental to any automatic processing and its
suppression is the first of the challenges. The choroidal layer
has the most prominent intensity in the image and adversely
affects enhancement of the vessel region. This is the second
challenge to be addressed. The next task to be addressed is
vessel contour detection. This is broken down into three sub-
problems as follows. A careful observation of Fig. 1 reveals
that the vessels can be located close to each other, have
low intensity boundaries, and a few of them can have large
areas. The first sub-problem is to detect and separate closely
located vessels, the second sub-problem is to detect vessels
with small area and the last one is to find the major vessels.
The last challenge is to find the area of the vessel contours
output by the solution to the previous step. Thus, we attempt
to solve a series of five challenges as part of the proposed
automated algorithm.

Fig. 1: Typical choroidal OCT scan image.

III. PROPOSED SOLUTION

The flowchart of the proposed algorithm is shown in Fig.
2. Each stage of the algorithm is discussed in the following.
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Fig. 2: Flowchart of proposed algorithm

A. Denoising

As shown in Fig. 1, a typical OCT scan image is in-
herently noisy [7]. Unlike other segmentation algorithms
[9], [8], we first denoise the image to minimize its effect
on subsequent stages in the proposed algorithm. This step
is motivated by the fact that segmentation and detection
algorithm almost always involves a differencing (gradient)
operation. It is well known [11] that noise severely degrades
the performance of gradient-based methods. Since denoising
is only a means to the end goal, no attempt has been made to
solve a denoising problem specific to OCT images. Instead,
BM3D [12], a well-known image denoising algorithm was
applied to denoise sensor noise. Noise standard deviation was
empirically determined to be 25 and input to the denoising
algorithm. We assume the noise to be additive, zero mean
and white Gaussian. This assumption can be removed if a
blind denoiser were used instead.

B. Segmentation

The next step in the algorithm is to segment the image
so that the region of interest is not dominated by the high
intensity choroid layer. This is achieved in a two step
procedure. Population thresholding is first applied to the
image to find the major edges in the image. In this method,
an empirically chosen threshold of 150 is used to binarize
the image. To eliminate noise, a majority filter is applied on
the binarized image. The filter size is 5×5 and majority is
considered to be 60%. To find the contour of the choroid, the
mean location of the white pixels (or its center of mass) is
found column wise. All pixels other than the mean location
are set to black and the mean location is set to white. This
gives an approximation of the choroid contour but is found
to be noisy. A smooth estimate of the contour is found by
polynomial curve fitting using a third order polynomial. Once
this curve is found, all pixels located above it are set to black.

This retains only the region of interest below the choroid and
is better suited for enhancement and segmentation.

C. Three methods for contour detection

To address the three sub-problems mentioned in section
II, the following solutions are proposed.

1) Boundary sensitive detection: Boundary sensitive de-
tection is achieved using a combination of full scale contrast
stretch (FSCS) and local thresholding. To achieve good
boundary sensitivity it is important that even the faintest
and most closely located edges are detected. Contrast en-
hancement is a pre-requisite to good edge detection. A
sliding window FSCS is applied on the entire image with
an empirically determined window size of 10×50. After this
stage, the image is partitioned into non-overlapping blocks
of size 150×150. Each block is binarized using a threshold
set to its respective average.

2) Intensity sensitive detection: To achieve intensity sen-
sitive contour detection a connected components-based al-
gorithm [11] is proposed. The algorithm is based on the
observation that there is a noticeable drop off in the pixel
intensity beyond the vessel boundary. A simple analogy:
assume that we want to count the number of branches in a dry
tree and their height. Place the tree in a glass container and
start to fill the container with water. At each water level, all
un-submerged branches are counted. The number of branches
that were previously not submerged but got submerged at the
current level gives a count of the number of branches at that
level. This method allows for the detection of small vessels
as well and is outlined below.

Data: Segmented image
Result: Identify contours
Pick initial threshold T (average of bottom-left 20×50
patch) and binarize image;
Do connected components analysis to find blobs;
while final threshold Tf (180, empirical) is not reached
do

T = T + δ for empirically chosen δ;
Compute connected components at new T ;
if a component disappears, detect it as a vessel

end
Algorithm 1: Intensity sensitive detection algorithm.

3) Vessel enhancement and detection: To achieve this
goal, the popular technique proposed by Frangi et. al. [13] is
applied to the segmented image output. In addition to vessel
enhancement, it also does vessel detection. This technique
clearly detects all the major vessel contours in the image
albeit blurring the boundaries of closely located vessels.

D. Refined contour detection

The outputs of the methods described in section III-C are
each designed to address a specific challenge. These outputs
are combined in a way so as to retain the best features of each
of them. The output of the boundary sensitive technique is
logically ANDed with the output of the vessel enhancement
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and detection stage. This achieves major vessel detection and
good boundary separation of closely located vessels. This
output is then logically ORed with the output of the intensity
sensitive stage and connected components analysis is done
to give the refined output.

E. Area measurement

Once the refined contour detection is complete, a list of
vessel contours along with labels are available. Area is com-
puted by simply counting the number of pixels associated
with each contour label.

IV. RESULTS

The output of each stage of the algorithm is shown in
Fig. 3 and discussed in the following. The reference scan
image is shown in Fig. 3(a). The result of denoising using
the popular method by Dabov et. al. [12] is shown in Fig.
3(b). The denoised image is much better suited for gradient
based operations than the reference. The result of population
thresholding in shown in Fig. 3(c). This step clearly identifies
the strong edges in the image which in this case happen to
be the choroid. However, this image is noisy and doesn’t
present a clean boundary for segmentation. The output of
white pixel location averaging is shown in Fig. 3(d). This is
a clear improvement over the previous step but still noisy.
To get a well defined boundary, a polynomial curve fit is
done on the average output as shown in Fig. 3(e). This
curve is used to segment the image and results in Fig. 3(f).
At this point, three different contour detection methods are
applied to account for the challenges involved. Fig. 3(g) is the
output of the boundary sensitive detection method. Intensity
sensitive detection result in shown in Fig. 3(h). The output of
the popular vessel enhancement technique in [13] is shown
in Fig. 3(i). The boundary sensitive and the Frangi method
are combined to give improved boundary separation as seen
in Fig. 3(j). This in turn is combined with the output of the
intensity sensitive method to give the final vessel contour
detection and is shown in Fig. 3(k). For comparison, the
ground truth vessel detection done by an expert is shown in
Fig. 3(l).

Statistical measures of performance for 12 images with
ground truth data available is shown in Table I. Based on
the false positive and false negative values, we see that
the proposed method performs well over a range of images
barring a few exceptions. A comparison of the areas reported
by an expert and the proposed method for the image in
Fig. 3(a) is shown in Table II. A comparison of area, the
Hausdorff distance and mean absolute difference shows that
the proposed algorithm correlates well with expert scores. We
attribute this consistency to the systematic way in which the
vessel contour detection problem was analysed and divided
into sub-problems of boundary sensitive, intensity sensitive
and vessel boundary enhanced detection. Each of these sub-
problems was solved using an appropriate set of tools and
the result of each stage combined to give a clean solution.
The algorithm takes about 4.5 seconds per image on a laptop
with Intel Core-i3 processor at 2.4 GHz and 4GB RAM.

Total vessels False positives False negatives
43 6 4
42 9 3
30 7 6
36 9 4
49 12 10
37 6 2
29 13 0
29 15 0
16 10 3
22 12 4
31 6 4
32 4 2

TABLE I: Classification statistics.

V. CONCLUSION AND FUTURE WORK
In this paper, we present a novel algorithm for the de-

tection of blood vessel contours in 2D-OCT choroidal scan
images and finding their area. The algorithm performed con-
sistently over a wide range of images as verified statistically.
It was observed that the performance of the proposed method
can be improved in cases where the vessels are either closely
located or sparse. Our future work would be directed towards
improving the performance in these cases using inputs from
expert opthalmologists.

REFERENCES

[1] D. Nickla and J. Wallman, “The multifunctional choroid,” Progress in
retinal and eye research, vol. 29, no. 2, pp. 144–168, 2010.

[2] M. Hogan, J. Alvarado, J. Weddell, et al., Histology of the human eye:
an atlas and textbook. Saunders Philadelphia, PA, 1971.

[3] R. Mullins, M. Johnson, E. Faidley, J. Skeie, and J. Huang, “Chorio-
capillaris vascular dropout related to density of drusen in human eyes
with early age-related macular degeneration,” Investigative ophthal-
mology & visual science, vol. 52, no. 3, pp. 1606–1612, 2011.

[4] D. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. Lutty,
“Relationship between rpe and choriocapillaris in age-related macular
degeneration,” Investigative ophthalmology & visual science, vol. 50,
no. 10, pp. 4982–4991, 2009.

[5] S. Motaghiannezam, D. Koos, and S. Fraser, “Differential phase-
contrast, swept-source optical coherence tomography at 1060 nm for
in vivo human retinal and choroidal vasculature visualization,” Journal
of Biomedical Optics, vol. 17, no. 2, pp. 026011–1, 2012.

[6] T. Torzicky, “Retinal polarization-sensitive optical coherence tomog-
raphy at 1060 nm with 350 khz a-scan rate using an fourier domain
mode locked laser.,” Journal of Biomedical Optics, vol. 18, no. 1,
pp. 026011–1, 2013.

[7] A. Mishra, A. Wong, K. Bizheva, and D. Clausi, “Intra-retinal layer
segmentation in optical coherence tomography images,” Optics ex-
press, vol. 17, no. 26, pp. 23719–23728, 2009.
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Vessel index Pixel area – algorithm Pixel area – expert Hausdorff distance Mean absolute difference (MAD)
1 1026 1266 10.77 240
5 106 104 4.24 2
6 1222 1133 18 334
7 736 789 9.21 53
8 2193 3150 15 957

14 627 519 11.18 108
15 203 199 7.81 11
16 1328 1535 11.40 207

TABLE II: A comparison of pixel areas measured algorithmically and by an expert for Fig. 3(a).

(a) Reference scan image. (b) Denoised scan image. (c) Population thresholded image.

(d) Average location image. (e) Curve fit. (f) Segmented image.

(g) Boundary sensitive detection. (h) Intensity sensitive detection. (i) Vessel enhancement and detection.

(j) Combined boundary sensitive and vessel
enhancement.

(k) Final contour detection. (l) Ground truth.

Fig. 3: Results of proposed algorithm.
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