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3-D Segmentation of Human Sternum in Lung MDCT Images
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Abstract— A fully automatic novel algorithm is presented
for accurate 3-D segmentation of the human sternum in lung
multi detector computed tomography (MDCT) images. The
segmentation result is refined by employing active contours
to remove calcified costal cartilage that is attached to the
sternum. For each dataset, costal notches (sternocostal joints)
are localized in 3-D by using a sternum mask and positions of
the costal notches on it as reference.

The proposed algorithm for sternum segmentation was tested
on 16 complete lung MDCT datasets and comparison of the
segmentation results to the reference delineation provided by
a radiologist, shows high sensitivity (92.49%) and specificity
(99.51%) and small mean distance (dmean=1.07 mm). Total
average of the Euclidean distance error for costal notches
positioning in 3-D is 4.2 mm.

I. INTRODUCTION

Accurate segmentation and 3-D modeling of the sternum
in multi detector computed tomography (MDCT) images is
a clinically valuable goal. The precisely segmented sternum
is a stable reference for registration of chest images, analysis
of human anatomy and localization of the costal notches
(sternocostal joints) in 3-D. In addition, it contributes to
sternum implant surgery and pre- and post-surgical analy-
sis related to sternum deformity correction surgery. Costal
notches positioning helps to estimate the costal cartilage
centre points from costochondral joint (CCJ) to the sternum
more accurately.

A model of the sternum has been presented [1] based on
geometry and used to fabricate an implant. The algorithm
uses healthy sternum samples to generate clouds of points
and a polygonal model. The technique to extract the sternum
samples includes thresholding, region growing and editing.
However the details and accuracy of the sternum samples’
segmentation have not been provided.

To extract pleural effusion in CT images, the sternum has
been used for registration [2]. 3-D sternum was obtained
by setting a regular triangle ROI at the anterior region and
extending it to VOI in z direction, yet performance of the
sternum segmentation has not been discussed.

Another method [3] uses the sternum and costal notches
information in 3-D to approximate the costal cartilage both
before and after sternum displacement, without providing the
sternum segmentation technique and accuracy evaluation.

To sum up, limited attempts have been made on ster-
num segmentation to date. In related publications, sternum
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Fig. 1. (a) and (b) sternum side and front-view [4], (c) 2-D sternum mask

segmentation is a part of other segmentation and to our
knowledge, no other published work has focused specifically
on sternum segmentation and evaluation.

The main contributions of this paper are: (i) a novel
algorithm for sternum segmentation in modern lung MDCT
images and (ii) localization of costal notches in 3-D. Our
fully automatic algorithm is a novel way to segment and
isolate the sternum in 3-D in lung MDCT datasets, followed
by a novel method to refine the segmentation result. For
refinement, we use the perimeter of the sternum front-view
(Figure 1 (b)) as illustrated in Gray’s anatomy [4]. By using
the sternum perimeter as sternum mask, existing calcified
cartilage that is attached to the sternum is removed automati-
cally. Finally using pre-knowledge of costal notches locations
on the 2-D sternum mask, we localize 14 costal notches in
each dataset in 3-D in Cartesian coordinate system.

The remaining paper is summarized as follows: in section
I, an overview of the proposed algorithm including bone
segmentation and sternum isolation in 3-D is presented.
This section also includes the novel framework to refine
the segmentation result, and the method of costal notch
localization in 3-D is explained in II-D. The experimental
results and evaluations are discussed in section III and the
paper ends with conclusion and discussion in section IV.

II. PROPOSED SEGMENTATION FRAMEWORK

The first step in sternum segmentation is to extract the
bone structure in the lung MDCT dataset. We employ the
well-known graph cuts algorithm for chest bone segmenta-
tion in 3-D [5]. After extracting the whole bone in MDCT
dataset, the next step is to automatically segment and isolate
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the sternum in 3-D. The result of sternum segmentation
may include existing calcified costal cartilage. To exclude
the irrelevant structures and identify the sternum border, the
active contours model is employed. By taking advantage of
knowledge about sternum anatomy, we localize the costal
notches in 3-D. The whole framework and detailed steps are
summarized in Figure 2 with an example for each step.

A. Chest Bone Segmentation

The first step is to prepare MDCT images of the dataset
for bone segmentation. This includes: (i) converting the
MDCT images to a conventional image format, (ii) removing
extraneous pixels such as air and other artifacts around the
body with thresholding and (iii) segmenting the lungs, using
graph cuts [6], and removing them in MDCT datasets, as
they do not carry helpful data for bone segmentation.

After preparing the datasets for bone segmentation, graph
cuts algorithm [7] is employed as a fast and effective way
to extract high contrast bone structure from the dataset [5].

For our purpose, bones in lung MDCT dataset and other
soft tissues are chosen as object and background respectively
to build the weighted graph G = (V, E). In mathematical
terms, optimal image segmentation is optimal pixels/voxels
labeling via minimizing the following energy function [8]:

E(A) = A Z Ry(Ap) + Z Bpg-0a,24,

pEP {p.a}eN

The regional part R,, for both bone and soft tissue is
defined as a Gaussian function. Expectation maximization
(EM) algorithm is employed to estimate the parameter values
of the Gaussian functions. The pixels/voxels intensity value
and the estimated Gaussian function values are passed to
graph cuts algorithm to segment the chest bone in MDCT
(Figure 2.a). Here, the graph G is built in 3-D with 26
neighbors. More details of graph cuts algorithm and bone
segmentation in lung MDCT images may be found [5], [9].

(D

B. 3-D Sternum Isolation

3-D result of bone segmentation in lung MDCT images
includes the vertebral column, ribs, sternum, clavicle and
scapula. It may also include existing calcified xiphoid process
and calcified costal cartilage (Figures 2.a).

The sternum may be isolated from other bones in 3-D
with 4 steps: i) ignoring the half-back of the 3-D bone seg-
mentation result (Figure 2.b), ii) finding N number of bone
cross-sections in mid-coronal plane (Figure 2.c), iii) tracing
all the N objects forward and removing them at each step
and iv) applying size constraint to stop the tracing procedure
for each IV objects. The result of this 4-step procedure is
the isolated sternum in 3-D (Figure 2.d) which may include
calcified costal cartilage, that should be removed.

C. Segmentation Refinement

The result of sternum isolation may include calcified
costal cartilage. By employing an active contours model, we
propose a novel algorithm to remove the undesired parts from
the sternum segmentation result.

Bone SegTentation

\14

Segmentation Refinement
A
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Extracting the bones from MDCT
with graph-cuts algorithm.
(example: left anterior oblique
view of bone segmentation resu?t)

A

y
Removing the half-back of the
bone segmentation result in 3-D.

=
£ v

= ||Finding N number of bone cross-
$ | |sections in mid-coronal plane.

— < | (example: the mid-coronal plane does
E not include any part of the sternum,
£ | |image size: 304 x512)

g v

£ | [Removing the data pixels while
5; tracing the N objects in mid-

coronal plane forward and stopping
the procedure with size constraint.
(example: anterior oblique view,
some calcified costal cartilage is
{ attached to the isolated sternum)

—

A 4

2-D front-view of the isolated
sternum.

(example: magnified 2-D front-
view, original size: 304 x512)

A 4

Removing elongated calcified
costal cartilage with morphological
operations and calculating the
sternum orientation.

(example: the orientation of the
example sternum is 5°)

Adjusting the orientation and centre
of the sternum mask (Figure 1.c) to
the patient sternum front-view.
Also adjusting its size to be enclosed

by the sternum front-view.
(example: the adjusted sternum
mask is the gray border)

Use the adjusted sternum mask as
predefined starting curve and run
the active contours twice with
different weight of smoothness.
(example: the smoothness of the
dashed curve is higher than the
solid curve )

A
Concatenating 1/3 top of the solid
curve and %/3 bottom of the
dashed curve (from last step),
shown with bold gray curve here.

~

Fig. 2.

Steps of sternum segmentation, tested on patient no. 7



Fig. 3. Sternum segmentation in patient no. 7 MDCT dataset in different
views. Left to right: left anterior oblique, anterior, right anterior oblique,
right lateral and posterior views.

Active contours, originally called snakes [10], is an
energy-minimizing spline that delineates objects in a given
image [. Starting from a predefined contour, the spline curve
is guided towards image features such as edges. More details
of the classic active contours may be found [10], [11], [12].

The proposed algorithm to remove the calcified costal
cartilage from sternum segmentation results in 3-D is sum-
marized as follows:

(i) Add binarized coronal planes together to get 2-D front-

view of the isolated sternum (Figure 2.e).

(ii) Calculate 6, the orientation of the sternum front-view.
Since the elongated calcified costal cartilages attached
to the sternum may change the sternum orientation sig-
nificantly, they are removed by applying morphological
operations (Figure 2.f).

(iii) Adjust the orientation of the sternum mask (Figure 1.c)
to 6. Also, move its centre to the centre of the sternum
front-view.

(iv) Adjust the sternum mask size to be enclosed by the
border of the sternum front-view (Figure 2.g).

(v) Set the sternum mask as predefined starting curve for
2-D active contours. Run the active contours algorithm
twice. First, run it with low weight of smoothness to
define the manubrium (the sternum upper part) border.
The weight of the smoothing term is chosen so that
the starting curve moves toward the manubrium details
well enough. In that case, the moving curve enters the
calcified costal cartilages at the costal notches positions
(Figure 2.h, solid curve). Second, run the active con-
tours with higher weight of smoothing term to define
the border of the sternum body more accurately (Figure
2.h, dashed curve). The final result of segmentation
refinement is the concatenation of one-third top of the
first active contour result and bottom two-third of the
second active contour result (Figure 2.i).

(vi) Apply the result of last step to all coronal planes of
the isolated sternum and remove pixel data outside it
in sagittal and axial directions. Different views of the
final sternum segmentation, tested on patient number
7, are in Figure 3. More examples showing removal
of calcified costal cartilage from the 3-D segmentation
results are in Figure 4.

D. Costal Notches Localization in 3-D

To determine the position of the 14 costal notches in 3-D,
we use the sternum mask from Figure 1.c and manually mark

Fig. 4. Top row: Sternum segmentation in 4 patients’ MDCT dataset with
calcified costal cartilage. Bottom row: Results after removing calcified parts.
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Fig. 5. (a) Sternum front-view [4] and manually marked costal notches,

(b) and (c) 3-D costal notches positioning on sternum segmentation result

and determine 7 costal notches in the z direction (Figure 5.a).

The ratio of mask height to marked costal notches is used
to determine the costal notches location in z direction on
final sternum segmentation front-view (Figure 5.b).

The costal notches are determined in y direction as the
leftmost and rightmost pixels of the sternum front-view
(Figure 5.b). The costal notches in x direction are localized
as the middle pixel of side-view, found at determined z
directions (Figure 5.c).

ITII. EXPERIMENTAL RESULTS AND EVALUATION

Material: The proposed method was tested on 16 patient
datasets, each with 380 slices on average. All datasets were
provided by the radiology department of Prince of Wales
Hospital, Sydney, Australia. MDCT images were taken from
patients of both sexes with an average age of 65.5 years and
for different clinical reasons. All images were taken with
Toshiba Aquilion PRIME CT scanner in axial direction with
1 mm slice thickness, and were saved in DICOM format with
non-contrast protocol.

Parameters setting: To convert DICOM images to a
conventional image format, we set window level (WL)=300
and window width (WW)=1500. We determine the DICOM
values interval of [WL — WW/2 , WL + WW/2] for
conversion to an intensity image and save it in PNG format.

To refine the sternum segmentation and isolation result,
active contours is run twice with different parameters. Weight
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Where:

n: number of neighbors & M: mask & A: result of automatic algorithm
DSC (Dice similarity coefficient) = (2x|M n A])/(IM| + |A])

Sensitivity = TP/(TP + FN) & Specificity = TN /(TN + FP)

TP: true positive & TN: true negative & FP: false positive & FN: false negative
FNR: false negative ratio & FPR: false positive ratio

FNR = 1 — Sensivity & FPR =1 — specificity

pM: number of pixels defining M contour &

pA: number of pixels defining A contour

dmean = (23141 d(q. M) + Zgil d(qv A))/(pM + pA)
o= (S5, dq,M)2 + 252, d(q, 402/ (oM + )

d(qu) =minr{\/(x - Xr )2+(Yq —¥r ) }

d(q, 4) = min, {\/(xr x4 (- yW}

Fig. 6. Performance evaluation, tested on 16 datasets

g
g
0

1L 2L 3L 4L 5L 6L 7L 1R 2R 3R 4R 5R 6R 7R
costal notches number at left and right

Fig. 7. 3-D Euclidean distance error of costal notches localization in 16
lung MDCT datasets, with 4.2 mm on average

of smoothing term and number of iterations for the first
time running are set to 15 and 2000 respectively and for
the second time are set to 30 and 1000.

Evaluation: The front-view of the sternum segmentation
results were compared to the corresponding reference masks.
The sternum reference masks were delineated by a trained ra-
diologist on OsiriX output images. The xiphoid process was
excluded from the reference mask, as the level of the xiphoid
process calcification is variant in different individuals.

Performance of the proposed algorithm for sternum seg-
mentation and comparisons of the results to the reference
masks were evaluated using different criteria. A summary of
the evaluations is shown in Figure 6.

To evaluate the costal notches localization, the positions
of 14 costal notches for each dataset were manually marked
in 3-D and confirmed by the trained radiologist. The 3-D
Euclidean distance between the marked and automatically
localized costal notches were measured individually. The
average of the Euclidean distance error for 14 costal notches,
calculated from 16 datasets, in shown in Figure 7.

IV. DISCUSSION

In this paper we present a novel fully automatic algorithm
for 3-D segmentation of human sternum in MDCT images
and 3-D positioning of costal notches. The evaluation shows

high performance for segmentation and low distance error
for costal notches positioning. To our knowledge, sternum
segmentation has not been fully evaluated before.

The result of 3-D sternum segmentation can be useful in
sternum implant surgeries as well as studies involving ster-
num geometry analysis [13]. It can assist cosmetic surgeons
performing sternum deformities correction to visualize the
sternum in 3-D and also in procedures predicting surgery
outcome before the operation.

In most CT images, costal cartilages are low in contrast
and the accurate costal notches positioning proposed here,
will assist in prediction of costal cartilage centre points from
CCIJ to the sternum [3].
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