
  

  

Abstract— An improved support vector machine (SVM) 
framework has been developed to segment hepatic tumor from 
CT data. By this method, the one-class SVM (OSVM) and two-
class SVM (TSVM) are connected seamlessly by a boosting 
tool, to tackle the tumor segmentation via both offline and 
online learning. An initial tumor region was first pre-
segmented by an OSVM classifier. Then the boosting tool was 
employed to automatically generate the negative (non-tumor) 
samples, according to certain criteria. The pre-segmented 
initial tumor region and the non-tumor samples generated were 
used to train a TSVM) classifier. By the trained TSVM 
classifier, the final tumor lesion was segmented out. Tested on 
16 sets of CT abdominal scans, quantitative results suggested 
that the developed method achieved significantly higher 
segmentation accuracy than the OSVM and TSVM classifiers. 

I. INTRODUCTION 

Hepatic tumors, especially hepatocellular carcinoma and 
hepatic metastases, are serious threatens to human health. 
Contrast-enhanced computed tomography (CT) is widely 
used for the detection, diagnosis and management of hepatic 
tumor. Tumor bulk is an important measure of the severity of 
diseases and tumor volumetry is used for cancer management 
and treatment response assessment [1-2]. In addition, 
accurate lesion localization is a necessary step to plan some 
diagnostic and therapeutic procedures such biopsy, ablation, 
radiotherapy, etc. Manual contouring of tumor margin is a 
tedious procedure and prone to considerable intra- and inter-
observer variability. Thus, automated and robust tumor 
segmentation and quantification is increasingly receiving 
attention from the research community. 

Hepatic tumors always show different image properties 
from the surrounding tissues/structures in CT images. 
Typically the identification and extraction of abnormal 
regions from an image region-of-interest (ROI) can be treated 
as a two-class classification for the separation of tumor and 
non-tumor classes. There were some studies on the 
segmentation of hepatic tumor by the support vector machine 
(SVM), a supervised learning-based method for binary and 
multi-class classifications [3]. Zhou et al developed a semi-
automatic scheme for the segmentation of 3D hepatic tumors 
from CT images. The main technique is a two-class SVM 
(TSVM) classifier cum a propagational learning strategy for 
 

*Research supported by a research grant (JCOAG03-FG05_2009) from 
the Joint Council Office, A*STAR, Singapore. 

J. Zhou, W. Huang, W. Xiong and W. Chen are with the Institute for 
Infocomm Research, Agency for Science Technology and Research,  
Singapore 138632, Singapore (corresponding author: J. Zhou; phone: +65 
6408-2497; e-mail: jzhou@ i2r.a-star.edu.sg).  

S. K. Venkatesh is with the Department of Radiology, Mayo Clinic, 
Rochester, MN 55905 USA. 

automated sampling, learning and further voxel classification 
among neighboring slices [4]. For the semi-automatic 
segmentation method reported by Freiman et al, it first 
classifies the liver voxels into tumor and healthy tissue with a 
TSVM engine from which a new set of high-quality seeds is 
generated. Over the 3D images, these seeds then conduct the 
propagation procedure, which is controlled by an energy 
function describing the affinity constraints, to obtain the final 
tumor region [5]. In the work of Zhang et al, CT volume is 
partitioned into a large number of catchment basins under 
watershed transform. Then a SVM classifier is trained by 
user-selected seed points to extract tumors from liver 
parenchyma, while the corresponding feature vector is 
computed based upon each small region produced by 
watershed transform [6]. The common process in these work 
is to online learn the actual data distributions of target 
(tumor) and non-target (non-tumor) data by sampling, then 
train SVM classifiers and extract the target data, with the 
assistance of linear/non-linear kernel mapping. 

It is clear that the classification performance of SVM is 
influenced by training samples as SVM is based on 
supervised learning. These “representative” training samples, 
which well reflect the distribution properties of the whole 
data, are needed in order to learn the actual distribution 
properties of data explored. However, the selection of 
“representative” training samples may not be easy, especially 
in selecting non-target samples. In tumor segmentation case, 
it is probably not difficult to pick up tumor samples from 
images, however the manual selection of “representative” 
non-tumor samples must be careful because non-tumor data, 
which usually include highly diverse tissue types, occupy the 
majority portion in both image and feature spaces in most 
cases. In fact, the arbitrariness in selecting non-tumor 
samples may cause considerable intra-/inter-operator 
variability in segmentation results. An alternative is to use the 
one-class SVM (OSVM) [7], a variant of SVM. An OSVM 
classifier can extract tumor region by learning data 
distribution from user-selected tumor samples only and non-
tumor samples are unnecessary. However, this method may 
achieve low true positive rates or high false positive rates for 
heterogeneous tumors with blurry boundary, due to the low 
discriminative power in OSVM-based data recognition. 

We developed an improved SVM framework which 
complementarily combines OSVM and TSVM by a boosting 
tool for hepatic tumor segmentation. In the rest of the paper, 
we describe the details of the method to elaborate how this 
framework works for tumor segmentation and benchmark its 
performance with other methods using clinical CT data. 
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II. METHOD 

A. Overview 
The workflow of the proposed method is shown in Fig. 1. 

An initial tumor region is first pre-segmented by an OSVM 
classifier. Then the negative (non-tumor) samples are 
automatically generated by a boosting tool, according to 
certain criteria. The pre-segmented initial tumor region, 
which is considered as the positive samples, and the negative 
samples generated are used to train a TSVM classifier to 
segment out the final tumor lesion. In this scheme, the good 
discrimination capability of TSVM is utilized to be the main 
segmentation tool, while the good recognition capability of 
OSVM is employed to be the guidance tool. The TSVM and 
the OSVM are connected by a boosting tool through the 
automatic generation of negative samples. 

 
Figure 1. The flowchart of the proposed SVM segmentation framework. 

 

B. Algorithm Details 
Step 1 ─ Pre-segmentation: First an OSVM classifier 

was trained by user-selected tumor samples. Then the trained 
OSVC was used to extract the initial tumor region from a 
rectangular ROI, as shown in Fig. 2. For the OSVM, the only 
available training data are from one class, i.e., the target class 
(here is the tumor class) and there is no information about the 
other class, i.e., the outlier class. The OSVM will define a 
boundary around the target class, such that it accepts as many 
of the targets as possible and excluding the outliers as many 
as possible. By a proper kernel mapping M that maps the data 
X to a higher dimensional feature space, a hypersphere can be 
sought to enclose the mapped target data with a smallest 
radius R and center C. 

 (a)     (b) 
Figure 2. (a) The tumor samples selected and the ROI; (b) initially 
segmented tumor region by the OSVM classifier. 

Step 2 ─ Boosting: In many cases, the initial tumor 
region extracted from Step 1 is not satisfying. The majority 
of the extracted tumor region is inside the actual tumor region 
and its boundary has some distance to the actual tumor 
boundary. Hence another data classification procedure 
utilizing the discrimination capability of TSVM follows up. 
Requiring both tumor and non-tumor samples, training a 
TSVM classifier is equivalent to finding an optimal 
hyperplane in a way that minimizes the error on the training 
dataset and maximize the perpendicular distance between the 
decision boundary and the closest data points in the two 
classes [3]. Here the initial tumor region extracted at Step 1 
using the OSVM classifier was used as the positive training 
samples. The negative training samples came from the 
“outliers” recognized by the OSVM at Step 1. For the OSVM 
at Step 1, data recognized as the target (tumor) were enclosed 
by the optimally constructed hypersphere in the higher 
dimensional feature space whereas data which were not 
recognized as the target scattered at the region outside the 
hypersphere. These outliers include non-tumor voxles, tumor 
voxels but unrecognized, and marginal voxels. The further an 
outlier is to the hypersphere, the less similar it is to the tumor 
class and the less likelihood it belongs to tumor class. 
Outliers which have high likelihood to be non-tumor voxels 
can be selected out for the BSVM training, according to 
certain selection criteria. In this study, suppose the radius of 
optimal hypersphere is R, those data which scattered at the 
region outside the concentric hypersphere (C, mR [m>1]) 
were mapped backward into the image space, as shown in 
Fig. 3. They were used as the negative training samples after 
re-sampling, to equalize the numbers of samples from the 
positive. In Fig. 3, solid spots inside the hypersphere (C, R) 
in feature space were mapped into image space as the 
positive samples (red region), and the hollow spots outside 
the hypersphere (C, mR) were mapped into image space and 
re-sampled as the negative samples (green scatters). 

(a)   (b) 
Figure 3. The illustrator of mapping data spots from the higher-dimensional 
feature space (a) to the image space (b). 
 

Step 3 ─ Main-segmentation: A TSVM classifier was 
trained using the positive and negative samples generated in 
Step 2. Then the trained classifier was applied into the ROI 
again to segment the tumor lesion by binary classification, as 
shown in Fig. 4. By such a heuristic process in Step 2, more 
positives samples can be picked up for the training of the 
TSVM classifier and the most important, an equal number of 
negative samples, which are very important for TSVM 
training, can be automatically generated. No user selection 
operation for negative samples is required. 
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Figure 4. Tumor region segmented in Step 3. 

C. Determination of Parameter ‘m’ 
According to experience, most of these true tumor voxels 

unrecognized by OSVM classifier locate at the marginal area 
of the tumor which has the fuzzy transition to the marginal 
non-tumor area. Therefore before the backward-mapping, as 
shown in Fig. 4, parameter m (m>1) was used to control the 
filtering of these possible marginal tumor voxels, preventing 
them from being the possible non-tumor samples. Of course 
an excessively large m will filter out many true non-tumor 
voxels as well, hence the value of m needs to be tuned 
carefully such that the resultant new outliers include non-
tumor voxels at a higher portion (ideal value, 100%) and 
tumor voxels at a lower portion (ideal value, 0). For this 
study, the proper value of m was determined in an off-line 
experiment manner by the greedy method: 

For one CT slice with expert-labeled tumor ground truth 
(GT), an OSVM classifier can be trained using operator-
selected tumor samples to segment out the tumor lesion. 
Given different m values, different sets of new outliers (non-
tumor voxels) were obtained by the filtering of hypersphere 
(C, mR) in the high-dimensional feature space. Assume that 
in the ROI, voxel number of tumor GT is KT, voxel number 
of non-tumor region is KN-T, voxel number from new outliers 
but belonging to tumor RS is LT, voxel number from new 
outliers but belonging to non-tumor region is LN-T, and let 

N T N T T TCo L K L K− −= − . A higher value of Co means a more 
appropriate value of m, under the assumption that with a 
good m, the resultant outliers should have a high portion of 
real non-tumor voxels and a low portion of real tumor voxels. 
Given individual m value variable from 1 to n (n>1) with a 
small internal, an appropriate m value can be determined by 
experiment using a batch of training data with traced tumor 
GTs. 

III. IMPLEMENTATION AND EXPERIMENT 

Voxel density indicated by Hounsfield Unit (HU) and its 
derivates are the most common low-level image features used 
for CT data analysis. In DICOM format, the voxel density is 
of 12-bit integer in data depth, but CT data will be converted 
into images of 8-bit integer in data depth for display and 
interpretation purposes, with different window level and 
width settings (window level, window width) to highlight 
different anatomic structures. The standard abdominal 
window is set at (50, 350), by which the organs and 
structures in abdominal region can be well visualized. To 
examine the hepatic region, especially to detect hepatic 
tumors, a window width of 350 is still too wide so that some 
tumors may be overlooked due to the close image intensities 
shown in this window. In practice, radiologists often use a 

narrower window width to observe hepatic region. Here a 
customized ‘liver window’ [8] for CT data rescaling was 
adopted: The liver window has a window center equal to the 
density of liver parenchyma and a window width of 180. In 
the implementation, each 12-bit CT data volume was rescaled 
into 2 set of 8-bit images using (1) the standard abdominal 
window (50, 350) and (2) the customized liver window 
(density of liver parenchyma, 180), where the density of liver 
parenchyma were obtained by online sample selection. The 
corresponding image intensities from the 2 sets of images 
form a concurrent feature vector (IAW, ILW) to be used as the 
low-level image feature for the segmentation. In addition, the 
Gaussian radius basis function (RBF) 

2 2( , ) exp( / 2 )K σ= − −x y x y  was adopted as the learning kernel 
in this study. The degree of similarity of two data points can 
be reflected by the kernel width parameter σ, hence a proper 
σ gives a trade-off between the tight separating margin and 
the potential over-fitting. An online learning scheme was 
adopted in this study hence for each slice to segment, the 
value of σ was set as the standard deviation calculated from 
the learning samples of tumor class. 

The experimental data include abdominal CT scans from 
20 patients acquired on one 64-detector CT scanner, using a 
standard four-phase contrast-enhanced imaging protocol with 
slice thickness of 1-3 mm, matrix of 512 × 512 pixels and in-
plane resolution of 0.6-0.9 mm. An experienced abdominal 
radiologist identified and manually traced out 32 isolated 
hepatic tumors. By using the greedy method described in 
Section II.C and data from 16 tumors with the corresponding 
GT, an m value of 1.25 was determined with cross validation. 
The remaining 16 tumors were used for algorithm testing. 

The proposed method was benchmarked with the OSVM 
and TSVM classifiers. Segmented tumors were compared 
with GT by spatial voxel matching. Two quantitative 
measures, volumetric overlap error (VOE, %) and average 
symmetric surface distance (ASSD, mm), were calculated to 
quantitatively assess the similarity between the computerized 
and manually defined tumors [9]. A VOE value is 0 is for a 
perfect segmentation and a value of 100% means that there is 
no overlap at all between segmentation and GT. ASSD tells us 
how much on average the two surfaces differ and the value is 
0 for a perfect segmentation. In addition, inter-operator 
variance (IV) [10] was used to estimate the inter-operator 
reliability of each method for segmentation attempts 
conducted by different users. A lower IV value means the 
better inter-operator consistency. 

IV. RESULTS 

CT slices bearing 16 hepatic tumors from 9 data sets were 
tested in the experiment. Fig. 5 shows the images of two 
cases of liver lesions, including the original images, the 
manually traced GTs, and the corresponding segmentation 
results using OSVM classifier, TSVM classifier and the 
proposed one. For Fig. 5 Row I, an arterial phase image 
shows a heterogeneous hypo-dense lesion with blurry margin 
to the surrounding liver parenchyma. The result from the 
proposed method is better than those from OSVM and 
TSVM classifier, though all the three methods miss the peri-
tumoral artery. This hyper-density mass is on the right side of 
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the tumor and is generally included into the entire tumor 
volume. In Row II, a portal venous phase image shows a 
large hypo-dense hepatic lesion and the proposed one 
demonstrated improved capability in identifying peripheral 
tumor regions with fuzzy transition to the healthy liver 
parenchyma, compared to the other two which failed. Eight 
consecutive CT slices from one scan and the corresponding 
segmentation results using the proposed method are 
demonstrated in Fig. 6. The quantitative validations at voxel 
level for segmentation results using the three methods are 
summarized in Table I. For the proposed method, VOE and 
ASSD obtained are significantly lower than those obtained by 
using OSVM and TSVM (p<0.05, Kruskal-Wallis test). The 
OSVM obtained the best result of IV and the IV obtained by 
the proposed method is slightly higher, however no 
significant difference is shown. The IVs from OSVM and the 
proposed method are significantly lower than that from 
TSVM (p<0.05, Kruskal-Wallis test). Both quantitative and 
visual results obtained showed that compared to OSVM and 
TSVM, the developed algorithm achieved better results for 
hepatic tumor segmentation. 

 
Figure 5. Hepatic tumor segmentation results. Row I: an example in arterial 
phase, Row II: another example in portal venous phase; Column a: original 
images with GT traced; Column b: result from the OSVM; Column c: result 
from the TSVM; Column d: result obtained by the proposed method. 
 

 
Figure 6. Segmentation results using the proposed method on 8 consecutive 
CT slices from one scan. 

V. CONCLUSION 
A three-step image segmentation method using an 

improved SVM framework has been developed to segment 

hepatic tumor from CT images. In this method, the OSVM 
and the TSVM were seamlessly connected in series by a 
boosting tool, for the automated generation and optimization 
of negative training samples. Implicitly the advantages of 
OSVM and TSVM were kept and some of their demerits 
were suppressed, leading to the better classification 
performance for tumor region. Experimental results 
suggested that the developed method achieved better 
segmentation accuracy than OSVM and TSVM, and better 
inter-operator consistency than TSVM. 

TABLE I. QUANTITATIVE EVALUATION OF HEPATIC TUMOR SEGMENTATION 

 
VOE (%) ASSD (mm) IV (%) 

O* T* P* O* T* P* O* T* P* 

Min 18.2 23.9 17.3 1.3 0.8 0.6 11.3 19.0 14.3

Max 50.1 43.7 35.4 4.7 2.7 2.1 26.4 33.2 27.8

Mean 39.4 32.1 27.0 2.3 1.8 1.4 17.6 25.9 19.6

STD 9.4 6.4 6.7 1.0 0.7 0.6 4.6 5.0 4.8 

VOE: volumetric overlap errors; ASSD: average symmetric surface distance; 
IV: inter-operator variance; O*, T* and P* stand for OSVM classifier, 
TSVM classifier and the proposed method, respectively. 
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