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Abstract— This paper introduces an automatic brain tumor
segmentation method (ABTS) for segmenting multiple compo-
nents of brain tumor using four magnetic resonance image
modalities. ABTS’s four stages involve automatic histogram
multi-thresholding and morphological operations including
geodesic dilation. Our empirical results, on 16 real tumors, show
that ABTS works very effectively, achieving a Dice accuracy
compared to expert segmentation of 81% in segmenting edema
and 85% in segmenting gross tumor volume (GTV).

I. INTRODUCTION

Medical image segmentation provides information nec-

essary for diagnosis, radiotherapy, treatment planning and

assessment, disease monitoring and surgery planning. This

paper focuses on segmenting brain tumors in magnetic

resonance (MR) images, to distinguishe different components

within the tumor volume.

In typical clinical practice, experts manually segment a

volume, or use semi-automated tools. Unfortunately, such

manual segmentation of tumors is time consuming and yields

non-repeatable results [1]. Many semi-automatic tumor seg-

mentation approaches have been reported in the literature [2],

[3], [4]; however, few of these methods achieve the objectives

most desired in clinical practices: simplicity, accuracy, speed,

and minimal user interaction. Some semi-automatic segmen-

tation methods are based on elementary image processing

techniques, for example, thresholding, region growing, and

edge detection. Some of these methods require extensive

user interactions and their accuracy is reduced by the lack

of contrast at the boundaries between different tissues.

Methods that involve robust statistical models or machine

learning techniques, for instance, fuzzy clustering and k-
nearest-neighbor, require precise input parameters and user

result interpretations [2], [3], [4]. Other methods, based on

deformable models, are very sensitive to the inhomogeneities

present in the images and also require user guidance.

This paper presents the Automatic Brain Tumor Segmen-

tation (ABTS) algorithm, which is efficient, does not require
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a user to provide input parameters nor initial estimates,

nor require any other user interaction, and also is very

simple to use. Our approach finds edema and gross tumor

volume (GTV) using four standard 2D magnetic resonance

sequences: T1-weighted spin-echo (T1), T1-weighted spin

echo with gadolinium contrast agent (T1C), T2-weighted

spin echo (T2) and Fluid Attenuated Inversion Recovery

(FLAIR) [5]. Our approach uses an automatic histogram

multi-thresholding procedure and morphological operations,

including geodesic transformations [6]. Although segmenta-

tion methods based on histograms are very sensitive to the

poor contrast at the tissue boundaries, ABTS overcomes this

challenge by using the information provided by the different

scans and with the use of double-thresholding at different

grey levels and geodesic dilation.

Section II describes our ABTS segmentation method;

each of its subsections explaining one component of its

components. Section III shows that ABTS works effectively

on real MR images, producing results comparable to expert

manual segmentations.

II. THE ABTS SEGMENTATION ALGORITHM

Our ABTS segmentation algorithm takes as input four

registered images of the same patient containing the four

standard MR sequences: T1, T1C, T2 and FLAIR. Then,

ABTS applies the following steps:

A. Thresholding

In this first stage, ABTS takes advantage of the known

histogram shapes common to the vast majority of brain MRI

scans. Generally, brain MRI histograms are bimodal: the first

mode represents the most common intensity values found

in the image background, which are close to zero; and the

second mode is mostly composed of grey values found in

brain tissues corresponding to gray and white matter (see

Figure 1). We followed Brummer et al. [7] by localizing

different thresholds in the four image histograms to obtain

binary 3D masks designed to separate different regions of

interest within the image – e.g., background from foreground,

or the skull from brain tissue or affected areas with high/low

intensities from healthy tissues. In order to simplify the

threshold localization, our approach uses a Savitzky-Golay

FIR filter to obtain smooth histogram envelopes for each

volume [8]. This filter preserves higher-order moments by

approximating the data within a window with a high-order

polynomial using a least-squares procedure [9].
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Fig. 1: Bi-modal function with modes µ1 and µ2 and multiple

thresholds: τFgr, τA and τB
.

After ABTS produces these smooth histogram envelopes,

it then localizes the first and second modes, µ1 and µ2.

Typically, the edema presents high intensity signal on FLAIR

and T2, and the gadolinium-enhanced lesion presents high

T1C intensities. Furthermore, most tumors have low signal

intensity on T1. Table I summarizes some patterns that we

have observed in brain tumor MRIs. These observations lead

us to threshold the images after the second mode µ2 to

separate areas of high intensities from the rest of the brain

tissues.

TABLE I: Signal intensity for tumors on MRIs.

Edema
Gadolinium-
enhanced
Lesion

Skull

T1 Low Low High

T1C Low High High

T2 High High High

FLAIR High – High

In particular, ABTS analyzes the first and second deriva-

tives of the histogram envelopes after µ2 and marks,

as possible thresholds, the inflection points where the

sign of the slope changes. For each modality m ∈
{T1, T1C, T2, FLAIR}, we define three main thresholds

τA(m), τB(m) and τFgr(m). Figure 1 illustrates the thresh-

old locations. ABTS identifies τA as the point with the

maximum slope change, after the second mode µ2. This

threshold highlights the skull’s voxels on all the MRI

modalities (T1, T1C, T2 and FLAIR). It also identifies the

gadolinium-enhanced lesions on T1C, the edema on FLAIR,

and ventricles, sulci and edema on T2, as shown in Figures 2

and 3.

The threshold τB(FLAIR) is the first intensity value

greater than τA(FLAIR), where a slope change also occurs.

Fig. 2: Thresholding results on one slice. On the top row

from left to right: T1, T1C, T2, IT1C-T1 (as defined in Section

II-D). On the bottom row from left to right, the thresholding

results for τA(T1), τA(T1C), τA(T2) and the enhanced lesion

from IT1C-T1.

Fig. 3: Thresholding results on one slice from FLAIR. From

left to right: the slice in FLAIR, the result of thresholding

with τFgr(FLAIR), the results obtained by thresholding with

τA(FLAIR) and τB(FLAIR).

ABTS localizes this threshold in FLAIR. Figure 3 shows an

example of the results obtained by thresholding FLAIR with

τA(FLAIR) and τB(FLAIR). Both thresholds yield images

containing part of the skull and edema. The image generated

by τA(FLAIR) is taken as the geodesic mask and the image

generated by τB(FLAIR) is taken as the marker set for the

geodesic dilation operator [6]; see Section II-C.

The threshold τFgr is localized in FLAIR histogram, which

corresponds to the first slope change found when descending

the curve from µ2 on the left side. This threshold selects

voxels corresponding to brain tissues and skull, excluding

ventricles, sinuses, and sulci. Figure 3 shows an image

thresholded with τFgr.

We represent the 3D image associated with a MRI modal-

ity m, I(m) : ℜ3 7→ ℜ which gives an intensity value for

each (x, y, z) point. We can use this and a threshold τ ∈ ℜ
to define a 3D mask

M(m, τ)[x] =

{

1 if I(m)[x] > τ,

0 otherwise.
(1)

We will writeM(m, τA(m)) as justM(m, τA). For exam-

ple M(T1, τA) contains all the voxels whose T1 intensities

are greater than τA(T1).
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Fig. 4: Edema segmentation on one slice. From left to right,

the skull mask used to strip off the skull; M(FLAIR, τB)
and M(FLAIR, τA) after removing the skull; M(T2, τA)
after removing the skull, ventricles and sulci; and the edema

segmentation result.

B. Skull Segmentation

ABTS extracts a first approximation of the skull loca-

tion by selecting the biggest 3D-connected component from

M(T1, τA), then complementing it with M(T1C, τA) to

produce a mask Mskull containing only the skull. This mask

is removed from all the images i.e., all of the subsequent

masks consider just the volume within the skull. Figure 4

illustrates the skull mask obtained for one slice.

C. Edema Segmentation

The two masks M(FLAIR, τA) and M(FLAIR, τB) con-

tain voxels corresponding to the tumor edema. ABTS applies

a geodesic dilation operator where M(FLAIR, τB) is the

marker and M(FLAIR, τB) is the geodesic mask [6]. As

illustrated in Figures 3 and 4, in M(FLAIR, τB) the edema

is less defined in comparison to M(FLAIR, τA). However,

M(FLAIR, τA) often contains small regions that do not

belong to the tumor but are still often 3D-connected, while

M(FLAIR, τB) provides less information but has fewer of

these small regions. For this reason, ABTS takes the edema

from M(FLAIR, τB) as a seed in the geodesic dilation

process, until reaching the edema area in M(FLAIR, τA).
Sometimes M(FLAIR, τA) does not identify the edema

completely because the presence of cyst and necrosis perturb

the signal intensity in the FLAIR image. To overcome

this challenge, ABTS also extends the seeds by geodesic

dilation overM(T2, τA). The geodesic dilation is performed

after eliminating ventricles and sulci using M(T2, τA) ∩
M(FLAIR, τFgr). As the τFgr threshold separates regions with

low intensities (such as ventricles, sulci, sinuses, etc.) from

tissues and skull, the image resulting from the intersection

contains only voxels that correspond to the edema and some

other isolated small areas with high intensity values in T2.

Thus, the geodesic dilation operator is able to complement

the initial edema from FLAIR with information provided by

T2 as shown in Figure 4.

D. GTV Segmentation

Although τA(T1C) helps to identify the GTV, we com-

plement this initial segmentation with information extracted

from IT1C-T1 = T1C − T1, which is the image formed by

Fig. 5: GTV segmentation on one slice. From left to

right: M(T1C, τA) and IT1C−T1 skull stripped; the GTV

segmentation result; and the edema (cyan) and GTV (red)

segmentations integrated.

a voxel-wise subtraction of the intensities of T1 from T1C;

see Figure 2 and Figure 5. At this stage, ABTS does the

following:

1) Standardize the intensity values of T1 and T1C to a

common intensity scale by using the method proposed

in Nyúl and Udupa [10].

2) Select from IT1C−T1 the voxels with high intensities

that are 3D-connected with the GTV fromM(T1C, τA)
and the edema mask obtained in the previous stage.

Figure 5 illustrates the result of this step.

ABTS standardizes the intensity values to cancel areas that

correspond to the healthy tissue and to enhance voxels

corresponding to the enhanced contrast.

III. SEGMENTATION RESULTS

A. Materials

In this work, we used a MRI dataset from patients with

glioblastoma, at different stages, treated at the Cross Cancer

Institute (CCI) in Alberta, Canada. We developed ABTS

using sixty patient cases, each containing only axial slices,

in each of the four sequences T1, T1C, T2 and FLAIR, that

were acquired with a 1.5T MR Philips Intera Achieva scanner

using a resolution of 512× 512 voxels with 21 to 25 slices

(varying for different patients), and with a spatial resolution

of 1× 1× 5 mm. For each patient, the four sequences were

acquired at the same imaging session without moving the

patient. All MRI data were previously stripped of all patient

personal information. The use of this MRI data set for this

work is approved by a research ethic board at the University

of Alberta.

We implemented ABTS using MATLAB and Ubuntu Mint

on a Laptop with 1.73 GHz quad core Intel R© processor and

6GB RAM.

B. Evaluation

A team of radiation oncologists from CCI hand-segmented

edema and the GTV for sixteen random cases, which were

different from the sixty used during the development stage.

For each image, we then estimated the similarity between

the mask M segmented by our method and the corresponded

image E segmented by the experts, using the Dice coefficient:

D(M,E) = (2× TP)/((2× TP) + FP + FN) (2)
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(a) Dice coefficients boxplot (b) Time boxplot

Fig. 6: (a) ABTS performance: Dice coefficient boxplots for

edema and GTV; (b) segmentation times for the data set.

where TP, FP and FN are respectively the number of voxels

that are true positive, false positive and false negative.

Figure 6a shows a box plot of the Dice coefficients

obtained for the sixteen evaluation cases, for both the edema

and GTV segmentations. The average Dice coefficients for

Edema and GTV are 81% and 85% respectively. Figure 7

shows slice examples of the segmentations obtained for the

best and the worst evaluated cases.

We see that ABTS did extremely well, on essentially every

volume. The few exceptions happened when the images from

different modalities did not satisfy the rules given in Table

I. The worst case, Figure 7b is caused by the presence of

high intensity levels covering the tumor area in some slices

in the T1 sequence; this can be fixed by a better tuning of

the MRI machine.

The average segmentation time is 49.18 seconds over the

60 cases of the dataset, see Figure 6b.

IV. CONCLUSION

Although the image set selected to evaluate ABTS includes

some challenging cases, the average Dice coefficients of

81% and 85% show extremely high overlap between the

manual and automatic segmentations for edema and GTV;

these accuracies are comparable to the average dispersion

between two trained radiation oncologists [11]. ABTS is

also very fast, with an average time of 49.18 seconds for

segmentation.

ABTS segments the four image sequences separately and

connects components intersected in 3D, therefore it is able

to deal with cases with slight rotation. As the four sequences

(T1, T1C, T2 and Flair) for each patient were acquired at the

same session without moving the patient, we did not need to

deal with registration issues related to translation and scaling.

This paper presents a fast, automatic and accurate method

for segmenting brain tumors. As it automatically identifies

(a) An slice form the best segmenta-
tion

(b) An slicec from the worst segmen-
tation

Fig. 7: The top images in (a) and (b) are the original slices

in FLAIR and T1C. On the bottom left, edema: manual in

magenta and automatic in cyan lines; GTV: manual in yellow

and automatic in red lines.The bottom right images are only

the edema and GTV automatic segmentations.

thresholds based on the histograms of intensities present in

the images, the ABTS method is easily able to effectively

segment images produced from different protocols and scan-

ners.
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[10] L. Nyúl and J. Udupag, “On standardizing the MR image intensity

scale,” Magn. Reson. Med., vol. 42, 1999.
[11] M. Schmidt, “Automatic brain tumor segmentation,” Master’s thesis,

University of Alberta, 2005.

3342


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

