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Abstract² Accurate multi-tissue segmentation of magnetic 

resonance (MR) images is an essential first step in the 

construction of a realistic finite element head conductivity 

model (FEHCM) for electroencephalography (EEG) source 

localization. All of the segmentation approaches proposed to 

date for this purpose require manual intervention or correction 

and are thus laborious, time-consuming, and subjective. In this 

paper we propose and evaluate a fully automatic method based 

on a hierarchical segmentation approach (HSA) incorporating 

Bayesian-based adaptive mean-shift segmentation (BAMS). An 

evaluation of HSA-BAMS, as well as two reference methods, in 

terms of both segmentation accuracy and the source 

localization accuracy of the resulting FEHCM is also presented. 

The evaluation was performed using (i) synthetic 2D multi-

modal MRI head data and synthetic EEG (generated for a 

prescribed source), and (ii) real 3D T1-weighted MRI head 

data and real EEG data (with expert determined source 

localization). Expert manual segmentation served as 

segmentation ground truth. The results show that HSA-BAMS 

outperforms the two reference methods and that it can be used 

as a surrogate for manual segmentation for the construction of 

a realistic FEHCM for EEG source localization.   

 

I. INTRODUCTION 

     Electroencephalography (EEG) source localization is a 

tool used to locate the source of epileptic seizures in the 

brain. In the case of focal seizures that cannot be 

satisfactorily treated by medication this information is used 

to guide surgical resection of the abnormal tissue. Accurate 

localization is thus essential. The accuracy is determined not 

only by the methods used to solve the underlying forward 

and inverse problems but also the quality and fidelity of the 

patient-specific head conductivity model used. This paper 

focuses the latter.  

The construction of a realistic head conductivity model 

involves, as a first step, the accurate segmentation of the 

SDWLHQW¶V� KHDG� WLVVXHV� IURP� PDJQHWLF� UHVRQDQFH� �05��

images. The segmentation can then be used to construct a 

finite element model in which each tissue type is assigned 

known conductivity properties. The segmentation 
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approaches proposed to date for this purpose [1-3] all require 

manual intervention. Consequently the segmentation process 

is laborious, time-consuming, and subjective. A fully 

automatic method is thus highly desirable.  

We recently proposed a fully automatic multi-tissue 

segmentation method for multi-modal MRI images of the 

head [4]. The method is based on a hierarchical 

segmentation approach (HSA) incorporating Bayesian-based 

adaptive mean-shift segmentation (BAMS). In this paper we 

propose the use of HSA-BAMS for the fully automatic 

construction of a patient-specific realistic finite element head 

conductivity model (FEHCM) for use in EEG source 

localization. We present an evaluation of the performance of 

HSA-BAMS, as well as that of two reference methods, using 

both synthetic 2D multi-modal MRI head data and real 3D 

T1-weighted MRI head data with corresponding 

segmentation ground truth (expert manual segmentation). 

The first reference method is BET-FAST [5, 6] commonly 

used in the creation of patient specific conductivity models 

[7]. The second is an instantiation of the HSA incorporating 

the HMRF-EM (hidden Markov random field model and 

associated Expectation-Maximization) algorithm [6] 

implemented in the FAST tool in FSL. 

 

II. METHOD 

A. MRI Data 

 We used two different data sets to evaluate the 

performance of our proposed HSA-BAMS method for EEG 

source localization. Data set 1 originates from synthetic T1-, 

T2-, and (proton density) PD-weighted MRI scans of a 

human head, with 1% Gaussian noise, from the Brainweb 

simulated brain database (SBD)
  
[8]. Data set 1 consists only 

of slice number 100 from each scan (spatially co-registered). 

The slice comprises szs H tsy pixels of size s�II6. Data 

set 2 comprises a T1-weighted MRI volume of the head of a 

healthy subject acquired on a 3T Philips Achieva scanner 

using a gradient echo sequence with the following 

parameters:  TR= 8.1655 msec, TE=3.7570 msec, flip angle 

of z¹,
 
and an acquisition matrix of size��twx H twx H s{w. 

The size of each voxel is��rä{uyw�II7.  

The ground truth (GT) segmentation for data set 1 was 

obtained from the 9 tissue labels in Brainweb. These were 

reduced to 5 labels by merging the connective, fat, muscle 

and skin tissue classes, and the glial matter and gray matter 

2Q�WKH�)XOO\�$XWRPDWLF�&RQVWUXFWLRQ�RI�D�5HDOLVWLF�+HDG�0RGHO�IRU�
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classes. The GT for data set 2 was obtained from a manual 

segmentation of the volume by an experienced radio

oncologist (J.G.) into five tissues: white matter (WM), gray 

matter (GM), cerebrospinal fluid (CSF), skin and skull/bone. 

B. Proposed Hierarchical Segmentation Approach (HSA) 

A schematic of the HSA is presented in Fig. l. The HSA 

conceptually takes as input a volume (V) comprising vector

valued voxels (each component originates from a different 

MRI scan). This volume is segmented into two disjoint sub

volumes, brain tissue (V8T) and non-brain-tissue (VNBT ), 

using a brain-tissue segmentation algorithm (BTSA) and a 

non-brain-tissue segmentation algorithm (NBTSA) 

respectively. In the experiments below we used BET [5] as 

the BTSA and a simple algorithm based on thresholding [9] 

and morphological reconstruction [10] for the NBTSA. 

Finally a multi-tissue segmentation algorithm (MTSA) is 

applied independently to the V8 T and VNBT volumes to 

segment them into individual tissue classes WM, GM, CSF 

and skin, skull/bone respectively. In the experiments below 

we used the following MTSAs: our own BAMS and the 

HMRF-EM method implemented in FAST. 

0. 

~ ~NB.__TS-A~ 

Figure 1. Schematic of the proposed HSA for automated whole head 

segmentation. See the text for a description of the acronyms and variables. 

C. Proposed MTSA; Bayesian Adaptive Mean Shift (BAMS) 

Our BAMS segmentation algorithm is based on the 

adaptive mean shift (AMS) segmentation framework 

proposed by Mayer and Greenspan [ 11]. The reader is 

referred to [ 11] for explanation of AMS framework. In 

BAMS, the kNN adaptive bandwidth estimator [ 11] is 

replaced with our own Bayesian adaptive bandwidth 

estimator. This estimator is in turn a novel variation on the 

Bayesian fixed bandwidth estimator proposed in [12]. The 

bandwidth is modeled by the a posteriori probability density 

function p(slx) oflocal data spreads given the data point x. 

Let M < n (total number of data pints) be the number of 

nearest neighborhoods to a data point X;. We can then define 

the pseudolikelihood 

P(slx) = CTf=1P (slxMj) (1) 

where P (slxMJ is the probability of local data spread s 

based on the Mj nearest neighbors data samples to xMj and 

{ Mj, j = 1, ... , N} is the set of N neighborhoods of various 

sizes. The evaluation of probabilities over the entire range of 

Mj is expressed as 

p (slxMj) = f p (slMj,XMj) p (MjlxMj) dMj (2) 

Applying Bayes rule we get 

( 

I 

) 

P(xM·IMj)P(Mj) 

p M·X. =-~1---
J Ml P(XM.) 

J 

(3) 

where P ( xMj IMj) is the probability of the data point xMj 

given the Mj nearest neighborhood. Hereinafter P(Mj) is 

considered to be a uniform distribution on the interval 

[M11 M2 ]. Several values are selected for Mj in this interval 

according to 
M - M + .M2-M1 

j - 1 } N 

For a given Mj the local variance sj is computed as 
M· 2 

SJ· = I1l1llxwi-xdl , i = 1,2 ..... n ,j = 1,2, ... N 
Mrl 

(4) 

(5) 

where xw
1 

is the nearest neighbor to the feature point X;. 

The distribution of variances is modeled as a Gamma 

distribution. Finally the adaptive bandwidth is computed as 

the mean of the Gamma distribution and is given by 

1i (x;) = a/J , i = 1,2, ... n (6) 

D. EEG Data 

Synthetic EEG was generated for data set 1 by placing a 

source in the GM of the GT image and calculating EEG 

signals from 30 electrodes placed equidistantly around the 

model. The real EEG data for data set 2 was obtained by 

recording the somatosensory evoked potentials (SEPs) on 

the subject's scalp. These SEPs were generated by 

stimulating the left wrist median nerve by electric pulses and 

EEG measurement was done using 61 electrodes based on 

10/10 system [13]. The GT for the source was taken to be 

the expected source region determined independently by an 

experienced clinician (A.H.) based on neurophysiological 

knowledge. 

E. EEG Source Localization 

Given a FEHCM the EEG source localization procedure 

involves the solution of the following two problems: (i) the 

forward problem which deals with finding the scalp 

potentials for the given current sources and (ii) the inverse 

problem which deals with estimating the sources to fit the 

given potential distributions at the scalp electrodes. Herein 

we used the subtraction method for modeling the dipole in 

the forward problem [14] and a modified particle swarm 

optimization (MPSO) [13] method to solve the inverse 

problem. 

F. Evaluation of the Proposed and Reference Segmentation 

Methods for Source Localization 

HSA-BAMS, HSA-HMRF-EM, and BET-FAST were 

independently used to segment both data sets. The BET tool 

threshold parameter 'f was set to 0.5 for the extraction 
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of VBT· The following parameters were set for HSA

BAMS: N = 10, M1 = 100 and M2 = 330. The parameter 

MRF beta was set to 0.1 for both the HSA-HMRF-EM and 

BET-FAST methods. An FEHCM was constructed from 

each segmentation as well from the GT. Segmentation 

accuracy was evaluated quantitatively using the Dice index 

(DI) [15]. EEG source localization performance was 

evaluated quantitatively using the following metrics: 

(i) RE (relative error) = llumeas - llestll/llumeas II 
where "meas is a vector of the measured potential on the 

scalp and "est is a vector of the potential generated by the 

estimated source; (ii) LE (localization error) = 
llx - Xestll where x is the GT source position and Xest is 

the estimated source pos1t10n; and 

(iii) OE (orientation error) = cos-1 
( M·Mest ) where 

llMll llMestll 

M is the simulated or GT source dipole moment and Mest is 

the estimated source moment. 

III. REULTS AND DiscussioN 

A. Segmentation Evaluation 

The DI values for each tissue and each method for both 
data sets are shown in Table I. They show that the 

performance of HSA-BAMS is consistently better than that 
of the two reference methods. Fig. 2 and Fig. 3 show the 

segmentation results for data set 1 and for a single slice in 
data set 2 respectively. It can be seen that for HSA-BAMS 

the results are less noisy and show better delineation for all 
tissues. 

TABLE I. DICE INDEX VALUES FOR EACH METHOD AND EACH TISSUE 

Tissue Data Set 1 (2D synthetic) Data Set 2 (3D real) 

HSA- BET- HSA- HSA- HSA-

BAMS FAST HMRF- BAMS HMRF-

EM EM 

WM 0.991 0.905 0.905 0.885 0.879 

GM 0.977 0.724 0.724 0.848 0.836 

CSF 0.953 0.635 0.635 0.523 0.517 

Skin 0.958 0.956 0.815 0.868 0.822 

Skull/ 0.981 0.886 0.880 0.697 0.588 

Bone 

B. EEG Source Localization Evaluation 

Table II shows that HSA-BAMS has less RE than either 

of the reference methods. In the case of data set 2 the RE 

compares favorably to that obtained from the GT 

segmentation. Table III shows that HSA-BAMS has less LE 

(a value of zero for data set 1) and less 0 E than either of the 

reference methods. Fig. 2( d) shows the estimated source 
position for data set 1 for each method. Fig. 4 shows the 

estimated source position for data set 2 for each method and 
for that obtained using the segmentation GT. It is likely that 

the poorer localization performance compared to data set 1 is 
that only Tl-weighted data was available for tissue 

segmentation. Thus both HSA-BAMS and HSA-HMRF-EM 
were not able to exploit multi-modal data (as was available in 

data set 1) to achieve more accurate segmentation. Moreover 
the T 1-weighted data in data set 2 has several shortcomings. 

Firstly the signal intensities for both fat and water are heavily 

attenuated because of an opposed phase cancelation of signal 

from both tissues. This leads to skull/bone segmentation 

errors. Secondly the presence of blood in the upper sagittal 
sinus means that the intensity of that area changes from low 

to high. This in turn causes some misclassification of CSF in 
that area as skin. These errors do not exist in the GT image 

because the radio-oncologist was able to use her anatomical 
knowledge to arrive at a more accurate segmentation. This is 

likely why the EEG source localization obtained from the GT 
segmentation is more accurate. Overall the results suggest 

that better quality, and multi-modal, MRl data would greatly 

improve the accuracy (less RE) of source localization 

obtained using HSA-BAMS. 

Figure 2. Segmentation and source localization results for data set 1: (a) 

HSA-BAMS; (b) HSA-HMRF-EM; (c) BET-FAST; and (d) GT 

superimposed with the location of the simulated (synthetic) source (green), 

HSA-BAMS estimated source (red), HSA-HMRF-EM source (blue) and 

BET-FAST source (yellow). WM is white, GM is gray, CSF is black, 

skull!bone is red and skin is yellow. 

Figure 3. Segmentation results for one sagittal slice from data set 2: (a) 

Original Tl-weighted image; (b) GT; (c) HSA-BAMS; and (d) HSA

HMRF-EM (WM is white, GM is gray, CSF is black, skull/bone is red and 

skin is yellow). 

Figure 4. Source localization results for data set 2: from segmentation GT 

(red); HSA-BAMS (yellow); HSA-HMRF-EM (blue) and clinician marked 

region (magenta) in the GM. 
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V. CONCLUSION  

In this work we have presented and evaluated a fully 

automatic method for the construction of a realistic finite 

element head conductivity model from multi-modal MRI 

data. The cornerstone of the method is a fully automatic 

method for segmenting multiple tissues called HSA-BAMS. 

It is a hierarchical segmentation approach incorporating 

Bayesian-based adaptive mean-shift segmentation. We also 

presented an evaluation of the method, as well as two 

reference methods, using (i) synthetic 2D multi-modal MRI 

head data and synthetic EEG generated for a prescribed 

source, and (ii) real 3D T1-weighted MRI head data and 

corresponding real EEG data with expert determined source 

localization ground truth. Expert manual segmentation 

served as segmentation ground truth. The results 

demonstrate the efficacy and accuracy of the method, that it 

outperforms the two reference methods, and suggest that it 

can be used as a surrogate for manual segmentation for the  

construction of a realistic FEHCM for EEG source 

localization. In the future we aim to evaluate our method 

with real multi-modal MRI data sets that HSA-BAMS can 

exploit to achieve more accurate segmentation than possible 

with the single T1-weigthed data set used in this study.  

 

Table II. RELETIVE ERROR FOR EACH METHOD 

TABLE III. LOCALIZATION  ERROR  AND ORIENTATION ERROR 
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Data Set 1 (2D synthetic) Data Set 2 (3D real) 

Methods ~q Methods ~q 

HSA-BAMS 0.01 HSA-BAMS 0.35 

HSA-HMRF-EM 0.03 HSA-HMRF-EM 0.42 

     BET-FAST        0.20 Ground truth 0.23 

Methods Data set 1 (2D synthetic) Data set 2 (3D real) 

xq {q xq {q 

HSA-BAMS 0.0mm 0.05o 21.0mm 22.0o 
HSA-HMRF-

EM 
5.7mm 0.27o 25.0mm 24.0o 

BET-FAST 5.1mm 0.18o - - 
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