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Abstract— In studies of germ cell transplantation, measureing
tubule diameters and counting cells from different populations
using antibodies as markers are very important. Manual
measurement of tubule sizes and cell counts is a tedious
and sanity grinding work. In this paper, we propose a new
boundary weighting based tubule detection method. We first
enhance the linear features of the input image and detect the
approximate centers of tubules. Next, a boundary weighting
transform is applied to the polar transformed image of each
tubule region and a circular shortest path is used for the
boundary detection. Then, ellipse fitting is carried out for tubule
selection and measurement. The algorithm has been tested on a
dataset consisting of 20 images, each having about 20 tubules.
Experiments show that the detection results of our algorithm
are very close to the results obtained manually.

I. INTRODUCTION

In testis germ cell transplantation, the identification and
enrichment of spermatogonial stem cells are two very im-
portant steps [2]. Testis weight, scrotal circumference, tubule
diameter and numbers of cells of each population are critical
to assess testis maturity at different developmental stages [8].
Traditional manual counting methods, which rely on expe-
rienced biologists drawing lines and marking cells on tissue
images, are tedious and sanity grinding. This paper proposes
an automated tubule and cell detection algorithm so that
biologists can be relieved from this time consuming work.

One way to detect object boundaries is to use threshold-
ing methods to segment objects based on their brightness.
Canny’s edge detector [3] detects boundaries or edges by
identifying points at which intensities change sharply. The
Laplacian of Gaussian (LoG) edge detector can be used
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to detect closed boundaries. Circular shortest path (CSP)
algorithms [7], [11], [12] detect a closed boundary by finding
a path on which the pixels have the highest/lowest overall
intensities. The ellipse detection method [10] which uses
curvature of edges and edge contours as further clues is very
effective in detecting ellipses. Active contour methods [9],
[5], [4] detect boundaries by minimizing an energy function,
requiring that the initial contour be placed close to the
boundary. Region growing methods [1], [13] segment objects
by comparing one pixel to its neighbors are robust. However,
when dealing with tubule detection, region growing will be
influenced by the positive cells inside the boundaries.

To overcome the limitations of existing methods, we
proposed a new fully automatic tubule detection method
based on a boundary weighting transform and the circular
shortest paths.

II. TUBULE DETECTION

Our algorithm detects tubule boundaries by first enhancing
the linear features of the input image. Then we detect the
approximate centers of each tubule region. After that, a
window is built at each center point and the window is
transformed from Cartesian coordinates to polar coordinates.
Then we apply a new boundary weighting transform on
the polar transformed image. Next, a CSP is used to detect
the boundary and the detected path is transformed back to
Cartesian coordinates. Finally, ellipse fitting is used to select
tubules perpendicular to the cross section and measurements
are made using the parameters of the fitted ellipses.

A. Boundary Enhancement and Center Detection

We first select the image channel in which the tubule
boundaries have the highest intensities (Figure 1(b)) and
the channel in which the cells have the highest intensities
(Figure 1(c)). Then we calculate the difference between the
two channels. After that, a morphological image opening
operation is carried out to remove noise from the image
(Figure 1(d)).

Some parts of tubule boundaries may have strong linear
features but not have high intensities compared to neigh-
boring points. Frangi et al. [6] proposed a Hessian matrix
based filter to enhance multiscale vessels. In this paper,
we add Frangi’s filter output (Figure 1(e)) to our image
opening result (Figure 1(d)). We see that the contrast between
the tubule boundaries and the rest of the image is greatly
enhanced.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Boundary enhancement. (a) Original color image. (b) The green
channel of the image. (c) The blue channel of the image. (d) The difference
between the green channel and the blue channel. (e) Frangi’s filter output.
(f) The summation of (d) and (e).

Then we need to detect the approximate center of each
tubule for the polar transform used in the CSP method.
First, an adaptive threshold is used to generate a binary
image (Figure 2(a)); second, a dilation is carried out to join
discontinuous boundaries and image opening and closing are
carried out to remove noise (Figure 2(b)); For each remaining
region, an ellipse fitting is carried out and the eccentricity, the
short axis, the average distance between the boundary and the
fitted ellipse are measured (Figure 2(c)). Since only tubules
which are perpendicular to the tissue cross section can reflect
the true size of the tubule, regions with a large eccentricity
should be removed, and regions that do not fit an ellipse
well should also be removed. After the region selection, the
average center position of each remaining region is calculated
and will be used in the CSP detection part (Figure 2(d)).

(a) (b) (c) (d)

Fig. 2. Illustration of tubule center detection. (a) The result of adaptive
thresholding. (b) Dilation of (a). (c) Noise removed using image opening
and closing. (d) Detected centers (center points are dilated and overlayed
on the original image to better demonstrate the center detection result).

B. Tubule Boundary Detection Using Circular Shortest Path

Once we have estimated the center of each region, the
circular shortest path method can be used to detect tubule
boundaries. For each center, a window is cropped from the
boundary enhanced image (Figure 3(a)). Output of Frangi’s

filter (Figure 3(b)) is used as a mask so that the program
only detects a path within regions where there is a strong
linear feature (Figure 3(c)).

(a) (b) (c)

Fig. 3. Window preparation. (a) A window is cropped from the boundary
enhanced image. (b) Output of Frangi’s filter. (c) Obtaining the region of
interest by masking (b) on (a).

To detect the circular shortest path from the image, we first
need to polar-transform the input image. Figure 4(a) shows
an example of the polar transformed result of Figure 3(c).
Problems arise when we use the multiple back-tracking algo-
rithm (MBTA) [11] to detect a shortest path from the image.
The red line together with the orange line in Figure 4(b)
shows the CSP detection result on Figure 4(a). We see that
in some parts of the image, the path does not follow the real
boundary (colored by green).

(a)

(b)

Fig. 4. Polar transform and MBTA detection result. (a) Output of the polar
transform. (b) The detected circular shortest path using MBTA.

C. Boundary Weighting Transform
The performance of the circular shortest path method

relies heavily on the quality of the input images. In a testis
image, the tubule boundaries usually have higher intensities
compared with the internal region. However, neighboring
tubules also have high intensities, sometimes even higher
than those of the current tubule boundary. Since the CSP
detects paths on which the overall pixels’ intensities is the
highest, the detection results may go through another tubule’s
boundary instead of the current one as we see in Figure 4(b):
part of the boundary of the other tubule (indicated by the blue
arrow) is much brighter than the current one and therefore
the red path has a larger overall intensity values compared
with that of the green one.
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We propose a new boundary weighting transform to
overcome this problem based on the assumption that pixels
close to the center should have a larger weighting compared
with pixels close to the border. Thus, for each column of
the polar transformed image, the weighting should decrease
from top to bottom. As pixels of the tubule boundaries are
supposed to have higher intensities, in each column the
pixels whose intensities are higher than that of its upper
and lower pixels can be regarded as a potential boundary
point. Then each column can be separated into segments,
each of which contains a potential boundary point. The
segments are labeled from 1 to n from top to bottom,
where n is the number of potential boundary pixels. The
segments’ weighting decreases from top to bottom while the
pixels belonging to the same segment should have the same
weighting. Segment i’s weighting is calculated by:

Wi = wi

where Wi is the weighting of segment number i, and w is the
weighting base. In our experiments, we set w to 0.9 based
on our test results on 5 random images.

Figure 5(a) shows the output of the boundary weighting of
Figure 4(a), (b) is the result of boundary weighting transform
and MTBA. We see that now the shortest path follows the
tubule boundary precisely.

(a)

(b)

(c) (d)

Fig. 5. Boundary weighting on a real image. (a) The output of the weighting
function on Figure 4(a). (b) Boundary weighting transform of Figure 4(a)
and the result of MBTA CSP. (c) Current window. (d) Transforming (b)
back to Cartesian coordinates.

D. Region Selection and Making Measurements

The last step is to fit an ellipse to the detected boundary.
We remove regions with eccentricity larger than 1.5, then
measure the length of the short axis of the remaining regions.

Finally, positive cells within the tubule boundary are detected
using adaptive thresholding and split using marker controlled
watershed. Figure 6 shows an example of the cell detection
result. The white curve shows the detected boundary; the
small green objects are detected positive cells.

Fig. 6. An example of the cell detection result. Cell boundaries are marked
by green curves and tubule boundary is marked by the white curve.

III. EXPERIMENTAL RESULTS

To verify the performance of the proposed method, we
tested our algorithm on 20 images using the same parameters.
We compare our automated detection results with manually
measured and counted results. Figure 7 is part of the detec-
tion result of the test image “0-25% 2 min TCT 1380 1103
L GATA4”.

Fig. 7. Part of the detection result on test image: “0-25% 2 min TCT 1380
1103 L GATA4”.

Comparison of each tubule’s manual count result and
automated detection result are shown in Table I. In the table,
“TD” is the tubule diameter. We see that the average number
of cells the program found is very close to the manual count
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result and the average radius of the tubule is also very close
to the manually measured size.

TABLE I
COMPARISON OF MANUALLY DETECTION RESULT WITH THE DETECTION

RESULT OF THE PROPOSED METHOD OF TEST IMAGE “0-25% 2 MIN TCT
1380 1103 L GATA4”.

Manual count Automated detection Difference

Tubule TD Cell TD Cell TD Cell
index (µm) number (µm) number (µm) number

1 134.80 9 133.68 7 1.12 2
2 119.28 7 119.11 8 0.17 1
3 151.99 17 154.07 24 2.08 7
4 138.60 20 116.41 19 22.19 1
5 126.78 15 123.28 17 3.5 2
6 90.44 4 94.71 2 4.27 2
7 98.54 7 98.73 11 0.19 4
8 118.47 5 92.41 14 26.06 9
9 129.58 29 123.12 23 6.46 6

10 120.60 32 121.96 22 1.36 10
12 121.44 12 119.80 14 1.64 2
13 132.02 14 130.07 13 1.95 1
14 116.62 8 108.27 9 8.35 1
16 107.39 19 99.91 19 7.48 0
17 104.08 15 110.60 14 6.52 1
18 110.00 21 115.95 16 5.95 5
20 89.65 21 83.26 15 6.39 6
23 96.21 11 86.75 15 9.46 4

Average 117.03 14.78 112.89 14.55 6.40 3.56

Table II shows the comparison of the manual count result
and automated detection result of each image in the dataset.
The number in each row is the average radius or cell number
of all the tubules in each image. The test results showed
that the proposed method is accurate in measuring tubule
diameter and detecting positive cells. The program is also
used by a biologist on images in a much larger dataset.

TABLE II
COMPARISON OF MANUALLY DETECTION RESULT WITH THE DETECTION

RESULT OF THE PROPOSED METHOD ON THE WHOLE DATASET.

Manual count Automated detection Average difference

Image TD Cell TD Cell TD Cell
index (µm) number (µm) number (µm) number

1 117.03 14.78 112.89 14.55 6.40 3.56
2 144.85 21.54 137.67 21.76 4.89 2.76
3 127.65 13.39 120.32 13.71 1.68 2.56
4 151.08 15.59 145.94 13.77 1.74 7.38
5 124.98 13.86 122.04 14.48 2.86 3.60
6 120.86 14.75 120.56 16.41 1.01 4.24
7 116.26 23.89 117.19 25.81 1.23 4.96
8 126.10 20.22 124.46 20.41 1.54 2.05
9 151.36 16.73 136.68 17.15 5.36 2.72

10 139.59 21.10 130.45 22.11 4.75 4.94
11 113.66 14.38 116.96 14.02 3.03 1.46
12 118.54 17.62 114.51 18.75 2.80 3.46
13 132.37 15.41 132.04 16.42 0.84 4.53
14 97.82 22.76 99.63 24.47 1.65 3.97
15 105.12 15.87 94.92 15.00 5.08 3.19
16 151.34 11.64 141.43 11.89 5.28 1.92
17 133.36 18.27 123.22 18.33 2.01 0.74
18 128.36 14.69 122.65 16.35 3.92 6.74
19 119.82 15.42 115.75 13.49 1.66 6.72
20 157.09 13.84 160.00 12.67 2.46 3.99

Average 128.86 16.79 124.46 17.08 3.01 3.77

IV. CONCLUSIONS

Measurements of tubule diameter and numbers of cells of
each population are critical for assessment of testis maturity.
In this paper a new boundary weighting transform is pro-
posed to provide input for circular shortest path detection.
With the new weighting function, circular shortest path can

detect accurate boundaries from noisy images. Comparison
of the detection results with the manual detection results
demonstrates that the performance of measuring tubule diam-
eter and detecting positive cells using the proposed algorithm
is very close to that of an experienced biologist.
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