
  

 

Abstract— Artifacts such as hair are major obstacles to 

automatic segmentation of pigmented skin lesion images for 

computer-aided diagnosis systems.  It is even more challenging to 

process clinical images taken by a regular digital camera, where 

the shadows of the skin texture may mimic hair-like curvilinear 

structures.  In this study, we examined the popular DullRazor 

software with a dataset of 20 clinical images.  The software, 

specifically designed for dermoscopic images, was unable to 

remove fine hairs or hairs in the shade.  Alternatively, we 

proposed using conventional matched filters to enhance 

curvilinear structures.  The more complicate hair intersection 

patterns, which were known to generate low matched filtering 

responses, were recovered by using region growing algorithms 

from nearby detected hair segments with linear discriminant 

analysis (LDA) based on a color similarity criterion.  The 

preliminary results indicated the proposed method was able to 

remove more fine hairs and hairs in the shade, and lower false 

hair detection rate by 58% (from 0.438 to 0.183) as compared to 

the DullRazor's approach. 

I. INTRODUCTION 

With emerging development of sophisticated 
computer-aided image analysis technologies, a remarkable 
interest has arisen for dermatologists to seek an objective 
second opinion from computer-aided diagnosis (CAD) 
software for assisting skin lesion malignancy diagnosis.  In 
dermatology, however, the majority of CAD development so 
far has been mainly focused on melanoma or melanocytic skin 
cancer detection using dermoscopic images [1, 2].  The reason 
is that melanoma is the most dangerous form of skin cancer.  It 
causes the majority (75%) of deaths related to skin cancer [3]. 
Since the incidence rates of melanoma in the Asian population 
are much lower than the Caucasian population [4], it drew our 
attention to develop a CAD system that is capable of 
classifying non-melanocytic skin cancers for the Asian 
population as well. 

In one of our ongoing research projects, we collected 
clinical images of skin lesions that were recorded using 
regular digital cameras [5].  Clinical images, or called 
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macroscopic images, are photographs that reproduce what a 
clinician sees with the naked eye.  The rationale to use clinical 
images for CAD is that the superficial characteristics such as 
diminishing texture and pores (which are useful diagnostic 
patterns for certain cancers such as basal cell carcinoma 
(BCC)) are visible in clinical images but not under 
dermoscopy examinations.  Another concern is that the 
effectiveness of dermoscopy for non-melanocytic lesions is 
still unknown.  As BCCs are far more common in our hospital 
and digital cameras are easily accessible, a CAD system 
devoted to process the clinical images of other types of 
cancers such as BCCs could be more beneficial to our 
clinicians. 

There are various imaging artifacts needed to be removed 
so that the skin lesions can be segmented more consistently by 
a CAD software system.  Among artifact pre-processing 
methods, hair removal algorithms [6-8] stand out as one of the 
most studied subjects.  This phenomenon is not surprising 
because human skin is covered by various types of hair which 
may be dark or light, thick or thin, dense or sparse.  These 
diverse patterns make hair detection a rather complicated task 
as compared to blood vessel segmentation [9-11].  Although 
hairs maybe better physically shaved before lesions are 
photographed, the presence of hair or pores can help 
differentiate benign lesions from BCCs.  Therefore, skin 
lesions prepared for clinical imaging are commonly not 
clean-shaven to keep the trace of hair for diagnosis purpose. 

In this study, we first evaluated a popular hair removal 
software, DullRazor [6], on a set of 20 clinical images.  We 
found that fine hairs and hairs in the shade were more difficult 
to detect by using DullRazor due to less consistent lighting 
conditions in clinical images.  Second, multiscale matched 
filters [5, 9] for detecting retina vessels were revised and 
implemented to improve the detection of shaded and fine hairs 
for clinical images. 

II. MATERIALS AND METHODS 

A. Data Acquisition 

The clinical images of skin lesions were selected from a 
database from the Kaohsiung Medical University Hospital in 
Taiwan [5].  In this database, a suspicious region was 
photographed by using a Nikon D70 6.1 megapixel digital 
single-lens reflex (SLR) camera and sigma 18-50 mm F2.8 
macro lens.  Biopsy was performed and histopathology result 
was available for each lesion.  From this database, a small 
testing dataset of 20 skin lesion images with visible, various 
hair and pigment patterns were selected to examine the 
performance of DullRazor software and the proposed hair 
detection algorithm. 
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                      (c)                                               (d) 
Figure 1. (a) Grayscale image of a skin lesion with hairs. (b) Closing image of 

the grayscale image in (a).  (c) The difference between closing image (b) and 

the original grayscale image (a). (d) Hair mask (in green color) detected by 

thresholding on intensity values in image (c). 

 

 

B. DullRazor: Morphological Closing 

It is quite natural for us to first consider adopting available 
pre-processing methods that are originally developed for 
dermoscopic images.  The DullRazor software was first 
introduced in 1997 [6] to digitally remove dark hairs from 
dermoscopic images, and is now widely used in the field of 
dermatology [8].  The key technique that DullRazor uses to 
locate thick dark hair pixels is a generalized grayscale 
morphological closing operation with a group of directional 
structure elements for specific curvilinear properties. The 
grayscale closing operation smoothes out the low intensity 
values at the thick dark hair pixels according to the structure 
element used to probe the image.  From a geometrical point of 
view, the dark hairs appear like troughs in a terrain model.  
The closing operation basically elevates the troughs according 
to the span of the directional structure element.    In [6], three 
directional structure elements at 0 degrees (horizontal), 45 
degrees (diagonal), and 90 degrees (vertical) are used to 
smooth out all the dark hairs.  In our implementation for 
illustrating Fig 1, we included a fourth direction: 135 degrees 
(anti-diagonal). The maximum values among 4 directions 
were collected as the final result. 

Fig 1 delineates an example of DullRazor's approach.  Fig 
1(a) illustrates the grayscale image of an input skin lesion and 
Fig 1(b) its resultant closing image using 4 directional 
structure elements.  Fig 1(c) illustrates the difference between 
Figs 1(a), the original image, and 1(b), the closing image.  In 
Fig 1(c), one can easily observe that a higher difference value 
is more likely to correspond the pixel to a dark hair.  However, 
skin texture which resembles dark hairs also generates high 
difference pixel values at the central region of Fig 1(c).   
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                       (c)                                            (d) 
Figure 2. (a) Multiscale matched filtering responses for Fig 1(a). (b) Hair 
detection by using a single, higher threshold. (c) Hair detected using 
hysteresis thresholding with two values. (d) Region growing based on color 
similarity by LDA  in the CIELab color space. 

 

 

Another drawback by using a closing operation is that fine 
hairs and thick dark hairs in the shade or within darker 
background have lower difference values.  Fig 1(d) shows a 
hair mask (in green color) by thresholding on Fig 1(c).  It 
demonstrates that DullRazor approach cannot detect fine and 
shaded hairs in clinical images. 

In order to increase the detection success rate, we need a 
more sensitive method to be able to detect thin and shaded 
hairs more consistently and robustly.  Multiscale matched 
filters which are able to enhance blood vessels of different 
diameters is a good candidate method which is delineated as 
follows 

C. Matched Filtering 

2D matched filters are shape-specified pixel patterns 
which convolve with a grayscale image to find similar patterns 
within the image.  Matched filters have been used to detect 
blood vessels for clinical skin images [5].  Here we test its 
applicability to hair detection for similar clinical images. 

Multiscale curvilinear matched filtering. Similar to retina 
image processing, the color image is first transformed into a 
grayscale image.  Because 2D lines in a grayscale image 
appear like ridges or trenches in a terrain model, a typical 
matched filter, FM, is a pixel value pattern resembling a ridge 
shape with a Gaussian-like profile: 
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where P is any point (x, y), P0 is the center (x0, y0) of the filter, 
and v is a unit vector perpendicular to the line tangent 
direction.  FM  is commonly defined in a square matrix of 

)3,3(
00

ff yx   . 

In order to convolve with ridge-shaped FM, defined in Eq 
(1), the grayscale image needs to be inverted so that dark hairs 
can be enhanced correctly.  The neighborhood 

)3,3( ff yxI    of a tested pixel (x, y) also needs to be 

normalized to pixel values ranging from 0 to 1 before 
convolving with Eq (1).  Let Z denote the filter response at a 
point (x, y) by matched filter FM defined with a standard 

deviation f  
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where i, j are integers between f3  and f3 . 

The multiscale curvilinear matched filtering repeats the 
computation (2) using a set of 4 discrete standard deviation 

values }22,2,2,1{f and a set of 12 directions for v in (1) 

as suggested in [9].  The maximum response Z is collected.  
The result of line-matched-filtering enhanced image for Fig 
1(a) is shown in Fig 2(a). 

Thresholding with hysteresis. Hairs in the line enhanced 
images are extracted by thresholding with hysteresis. John 
Canny's two-level thresholding with hysteresis is an effective 
edge detection algorithm which can trace the curve of an edge 
with faint sections [12].  It works the same way for matched 
filtering curvilinear structures.  The algorithm assumes that 
important linear structures are more likely to have high 
enhanced responses.  Therefore, a high threshold can be used 
to identify the major hair sections.  The detected hairs (in 
green color) shown in Fig 2(b) is the resultant image using a 
high threshold of 0.75 on the enhanced image shown in Fig 
2(a).  While partial segments of hair may be situated at some 
more noisy background, these hair segments may be enhanced 
but with a lower filtering response value.  Therefore, 
hysteresis thresholding uses a secondary threshold, which is 
lower, to extend the hair segmentation extracted by the high 
threshold.  Fig 2(c) shows the extended hair segmentation (in 
green color) by a low threshold of 0.65. Small detected line 
segments are considered as noise caused false detections and 
they are removed in Fig 2(c). 

D. Recovering Hair Intersections 

The intersections of ridges are known to generate low 
filtering responses due to high shape difference from a pure 
ridge structure.   Fig 2(c) shows that the majority of hair 
intersections are still missing even with a lower threshold.  To 
improve our hair segmentation algorithm, we proposed using 
machine learning techniques such as linear discriminant 
analysis (LDA) [13] to recover missing hair intersections from 
partial information of hair color pixel values discovered in Fig 

2(c).  Generally speaking, LDA uses two measures to separate 
classes of data samples: 1) within-class scatter matrix  
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j

i
x is the i-th sample of class j, 

j
 is the mean of class j, 

c is the number of classes, and Nj the number of samples in 
class j,  is the mean of all classes. 

For discriminating classes, the goal is to maximize the 
between-class measure while minimizing the within-class 
measure.  One way to do this is to maximize the ratio 

||det||det
w

S
b

S .  It has been proven [14] that if Sw is a 

nonsingular matrix then this ratio is maximized when the data 
is projected onto a new space defined by the eigenvectors of  

b
S

w
S

1
.  Since we only employed sample color information 

from both hair and non-hair pixels defined in the CIELab 
color space with 3 variables of L, a, and b, we were able to 
efficiently build linear classifiers locally for every pixel under 
consideration.  By using region growing algorithms and local 
LDA results based on the pixel color information, hair 
intersections can be recovered very effectively and accurately.  
Fig 2(d) shows the much improved hair detection results as 
compared to Fig 1(d). 

III. RESULTS 

Figs 3 and 4 illustrate two hair removal examples to 
compare DullRazor and the proposed line-filtering algorithm.  
Fig 3 is a lesion with some thick dark hairs located in shade 
and  Fig 4 is a lesion with both thick and fine hairs.  Figs 3(b) 
and 4(b) show that closing operations fail to remove hairs in 
the shade and fine hairs respectively.  Figs 3(c) and 4(c) 
demonstrate that our proposed line-filtering approach is able 
to detect all kinds of hair, thin or thick, situated in a bright or 
shaded background.  Finally, Figs 3(d) and 4(d) show that 
hairs can be removed more robustly by using the proposed 
approach as compared to Figs 3(b) and 4(b).  Please note that 
Figs 3(b) and 4(b) were processed by the DullRazor software 
[6] while hair pixels in Figs 3(d) and 4(d) were removed by 
using median filtering from non-hair neighbors.  Fig 5 shows 
that the proposed method can lower false hair detection rate by 
58% (from 0.438 to 0.183) at the true detection rate of 0.81. 

IV. CONCLUSION 

We have presented an improved hair segmentation 

algorithm for clinical images of skin lesions.  We found that 

matched filtering can improve the detection of thin hairs and 

hairs in the shade.  We also demonstrated that missing hair 

intersections can be recovered effectively by applying region 

growing algorithms with color similarity criteria.  
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Figure 3. (a) Original clinical image of thick dark hairs in the shade. 

(b) Hair removal by using DullRazor. (c) Hair segmentation: green 

pixels are detected by the proposed method only, red by manual 

marking only, and black by both manual marking and  the proposed 

method. (d) Hair removal by using the proposed method. 

 

 

  
                      (a)                                                 (b) 

   
                       (c)                                              (d) 

 

Figure 4. (a) Another example lesion with both thick and fine hairs. 

(b) Hair removal by using DullRazor. (c) Hair segmentation: green 

pixels are detected by the proposed method only, red by manual 

marking only, and black by both manual marking and  the proposed 

method. (d) Hair removal by using the proposed method.  

 
Figure 5. True and false positive rates of detecting hair pixels 

computed from 20 clinical images and manually marked hair masks.  
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