
  

 

Abstract— We developed a toolbox for detecting 
high-frequency oscillations and evaluating cross-frequency 
phase-amplitude coupling in electrocorticographic (ECoG) data 
with optimal parameters. Here we demonstrate use of the 
toolbox using simulated and realistic ECoG data. The results 
confirmed its potential usefulness for clinical research or 
practice. The tools have been released as a Phase-Amplitude 
Coupling Toolbox (PACT) plug-in for EEGLAB, an open 
software environment for electrophysiological data analysis 
(sccn.ucsd.edu/eeglab). 

I. INTRODUCTION 

It is sometimes necessary to record intracranial EEG in 
pre-surgical evaluations of patients with medically 
uncontrolled epilepsy to determine where the epileptic 
seizures arise and plan surgery for adequate seizure control 
[1]. Previous studies reported that high-frequency oscillations 
(HFOs) above 80 Hz are intermittently emitted during 
interictal periods of slow wave sleep (periods between 
epileptic seizure events), and that surgical removal of the 
cortical sites exhibiting such HFOs is associated with a larger 
chance of post-surgical seizure control [2]. Conversely, it has 
been shown that not all HFOs during slow-wave sleep are 
epileptogenic. HFOs with similar spectral character are 
frequently and spontaneously generated in healthy cortical 
areas including sensorimotor and visual cortex [3]. Thus, 
development of a well-defined and easy-to-apply method for 
differentiating epileptogenic from non-pathological HFOs is 
highly desirable for further research toward clinical 
application of HFO measurements in planning surgery for 
epilepsy.  

In a recent report, HFOs in non-pathological cortex were 
reported to be significantly phase-locked to slow-wave 
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activity near 1 Hz, a strong background frequency in healthy 
visual cortex during slow-wave sleep [3]. On the other hand, 
HFOs generated at the same time in the seizure onset zone 
were phase locked to slightly higher frequency slow-wave 
activity at 3-4 Hz [3]. A plausible hypothesis, therefore, is that 
the strength of coupling between slow-wave phase and HFO 
amplitude (i.e., their phase-amplitude coupling or PAC) could 
serve as a better biomarker of epileptogenicity than HFO 
amplitude alone.  

Here, we demonstrate the Phase-Amplitude Coupling 
Toolbox (PACT), a plug-in for EEGLAB [4]. PACT searches 
for relevant combinations of parameters while automatically 
detecting HFO events in each input channel, then calculates 
circular phase statistics and computes a measure of 
cross-frequency phase-amplitude coupling. We apply the 
toolbox to two types of data for evaluation: simulated data and 
intracranial ECoG data recorded from an epileptic patient. 

II. MATERIALS AND METHODS 

A. Simulated Data 

Pink noise (540 s, sampled at 1000 Hz, variance 0.0385) 
was generated to serve as simulated noise-only data. 
Thirty-six 1.5-s events, each a 6-cycle 4-Hz low-frequency 
oscillatory burst (LFO) (peak-to-peak amplitude, 1.00), were 
added to the noise-only data at random latencies to serve as the 
signal-plus-noise condition (variance 0.0189) (Figure 1, top 
right). To introduce cross-frequency phase-amplitude 
coupling, 120-Hz, 8-cycle, sinusoidal high-frequency 
oscillatory bursts (HFOs) (peak-to-peak amplitude, 0.34) were 
nested in the trough of LFO bursts and Hann-windowed. The 
HFO and LFO amplitudes were selected to follow a 1/f power 
law. SNR was -3.09 dB.  

B. Electrocorticographic data 

Electrocorticographic (ECoG) data were recorded from 
the exposed cortical surface of a patient (age 9, female) who 
became seizure-free following surgical resection. The 
multichannel ECoG data, 540-s in duration, were sampled at 
1000 Hz. Offline visual inspection by a neurologist identified 
HFOs above 80 Hz independently arising in the seizure onset 
zone (which was subsequently removed surgically) and from a 
non-pathological cortical area (preserved in the surgery). 

C. Signal processing 

Simulated and actual data were imported into EEGLAB 
12.0.0.0 running on MATLAB R2012b (The Mathworks, Inc., 
Natick MA) to apply PACT tools. Data were first separated 
into LFO phase and HFO amplitude using band-pass filters 
followed by Hilbert transformation. To construct the 
band-pass filter, the EEGLAB plug-in pop_eegfiltnew() was 
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used [7]. This function designs a Hamming-windowed FIR 
filter with optimized filter order.  

The LFO frequency range of the ECoG data was 
determined by scanning the parameter space using PACT 
function pac_scanLfoPhaseFreq(). To estimate the LFO 
frequency range relevant for the PAC analysis, the function 
performs a brute-force computation on combinations of two 
independent variables: LFO frequency band and the 
percentage of highest absolute value points in the high-pass 
filtered data to sample. Since neurological interest here is 
more in the precise LFO frequency range than the HFO, the 
HFO frequency range is fixed. There are two output measures: 
Mean Resultant Vector Length (described below) and 
Canolty's PAC Modulation Index [5][6], a measure of 
cross-frequency phase-amplitude coupling. The former is 
naturally normalized to [0 1] while the latter has no fixed 
range since it takes amplitudes into account. Because of the 
large amplitude difference between the two channels in the 
actual ECoG data we used Mean Resultant Vector Length to 
select parameters from the parameter space (described below).  

For the simulated data, we applied band-pass filter with the 
same frequency ranges used in the simulate data: 4.0-to-4.1 Hz 
for the LFO band (transition bandwidth 1 Hz, filter order 
1651), and a 120-to-121 Hz band-pass filter for the HFO band 
(transition band width 15 Hz, filter order 111).  

For the actual data, we consulted the results of 
pac_scanLfoPhaseFreq()(Figure 2 top) to design 1.3-Hz to 
2.3-Hz band-pass filter for the LFO band (transition 
bandwidth 1.3 Hz, filter order 2541). The band-pass filter for 
the HFO included frequencies between 80 and 300 Hz 
(transition bandwidth 20 Hz, filter order 167) to cover high 
frequencies broadly.  

 For both datasets, the HFO data were sorted from high to 
low values, and the 2% of data points with highest absolute 
values were used in the PAC computation (as determined by 
consulting Figure 2, top). HFO and LFO measures for these 
windows were combined to construct complex-valued phasors 

z[n] HFO[n]exp(iLFO[n])                  (1) 

where  represents HFO amplitude and  LFO 
phase. From these phasors, the mean resultant vector length, 
angular histogram of , phase-sorted amplitude, and the 
PAC Modulation Index were computed. Mean Resultant 
Vector Length, R, reflecting phase consistency across the 
highest-amplitude windows, was computed as:

 

                            (2) 

where  and N is the total number of 

observations. The PAC Modulation Index, M, was calculated 
as: 

                           (3)
 

D. Statistics 

To test the null hypothesis that LFO phase and HFO 
amplitude are decoupled in the data, either surrogate data or 
analytic methods may be used [6][8]. For estimating the 
significance of the PAC Modulation Index, we used the 
surrogate data method proposed in [5]. We randomly paired 
the amplitude and phase of ][nz by circularly permuting the 

phase time-series  relative to the amplitude series 

and computed the PAC Modulation Index for the resulting 
surrogate time series. We repeated this process 1,000 times to 
produce distributions of values of M for data sets in which the 
null hypothesis should hold (i.e., that phase/amplitude 
coincidence is only by chance). Values of these variables for 
the original (non-permuted) data were then compared to the 
quantiles of this distribution to obtain uncorrected p-values 
for violation of the null hypothesis. The number of phase bins 
was set to 36. The significance threshold to p<0.05. 

A histogram of Mean Resultant Vector Lengths, R, was 
computed, and its deviation from a uniform circular 
distribution was tested using the Rayleigh test, Omnibus test, 
and Rao’s test as provided in CircStat, a MATLAB toolbox 
for circular statistics [8]. Here we report the Rayleigh test 
results.  

 Mean HFO amplitude values sorted by LFO phase angle 
was computed, and their deviation from a uniform distribution 
was tested (Figure 1 third row). Circular statistics were not 
useable here because the measure is not phase but mean 
amplitude of each phase bin. We used Kolmogorov-Smirnov 
and Chi-square tests using standard MATLAB functions. 
Here, we report the Kolmogorov-Smirnov test results. 

The above measures and statistics were computed for 
single data channels of interest. Results were corrected for 
multiple comparisons (e.g., likelihood of occurrence by 
chance in at least one of the recorded channels) using 
Bonferroni, Bonferroni-Holm [9] and False Discovery Rate 
[10] corrections. Here we report Bonferroni-corrected results.  

III. RESULTS 

A.  Simulated Data Results 

The PAC Modulation Index M was considerably larger in 
the signal-plus-noise data than in the noise-only (0.036 vs. 
0.0028). In the signal-plus-noise data, M reached significance  
(p < 0.05) whereas in the noise-only data it did not (Figure 1, 
second row). This test confirmed that PACT detected the 
presence of relatively weak, rarely occurring (about p=0.1) 
cross-frequency phase-amplitude coupling events embedded 
in the noise background. 

The angular histogram of the signal-plus-noise data 
(Figure 1 third row) deviated significantly from a uniform 
distribution (p<0.001) detecting that the vector length maxima  
were placed at π  radians (troughs of the LFO). The 
noise-only data did not show it.  

Mean Resultant Vector Length, R, for the 
signal-plus-noise data was 0.35 (with a phase angle of -3.11), 
that was significantly longer than for the phase-randomized 
surrogate data (p < 0.05) whereas Mean Resultant Vector 
Length of the noise-only data was 0.04 (with a phase angle of 
-2.69), not longer than chance.   
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As expected, maximal HFO amplitudes appeared near π 
radians. The distribution of phase-sorted HFO amplitudes was 
significantly different from a uniform distribution (p < 0.001), 
whereas this pattern was not present in the noise-only data 
(Figure 1, bottom).  

 For exploratory purposes, we estimated the sensitivity of 
PACT by increasing the noise level in the simulated data. 
When the SNR of the simulated HFOs was -10 dB or less, the 
PACT function failed to detect the embedded PAC. 

 B. Electrocorticographic Data Results 

The PACT LFO frequency-range search produces color 
maps representing the distribution of Mean Resultant Vector 
Length values in the plane of LFO frequencies (from 0.5 Hz to 
8 Hz, log spaced) and highest-absolute value sampling 
densities (from 0.1% to 100%, log spaced) (Figure 2, top). 
These maps indicate that the observed Mean Resultant Vector 
Length value was larger in the pathological channel than in the 
non-pathological channel, with a peak for the LFO frequency 
range 1.3 Hz to 2.3 Hz, and highest-amplitude data sampling 

percentages from 0.1% to 1.7%. PAC successfully identified 
spikes and relatively sustained HFOs in the pathological 
channels. 

 The PAC Modulation Index also was larger in the 
pathological channel than in the non-pathological channel 
(15.9 vs. 5.57), though both values were statistically above 
chance (p < 0.01). 

Mean Resultant Vector Length was 0.387 (with a phase 
angle of -0.38) for the pathological channel and 0.376 (with a 
phase angle of -3.00) for the non-pathological channel; again, 
both reached statistical significance (p < 0.01).  

Maxima of the phase-sorted HFO amplitudes for the 
pathological channel contained a non-significant peak near 0 
radians (Figure 2, bottom). These results suggest that PAC 
occurred in both the pathological and non-pathological 
channels, but with different characteristics. Further studies are 
warranted to differentiate pathological from non-pathological 
PAC patterns. Figure 3 shows an example of a 3-s data period 

 
 

Figure 2. Pathological (left column) and healthy (right column) ECoG data 
channels from the same subject. Top: results of brute-force computation on 

combinations of LFO frequencies (Hz) and highest-amplitude window 
sampling rate (%). Note the difference between conditions in the 1.3 Hz to 
2.1 Hz LFO band and 0.1% to 1.7% data sampling frequency range. These 
parameter values were then used to compute and test PAC values. Other 

panels as in Figure 1. 
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Figure 1. Simulated cross-frequency phase-amplitude coupling data: 
signal-plus-noise (left column) and noise-only (right column). Top left: A 
simulated signal event. Top right: The same event embedded in the noise. 

Second row: PAC Modulation Index (gray) comparison with 99% 
confidence interval (CI, no face color). Asterisk shows p < 0.05. Third row: 

phase/amplitude histograms. Mean resultant vectors are superimposed in 
red; the vector length scales are noted (in the 60-90 deg segments). Bottom: 
phase-sorted amplitude histogram comparison. LFO phase is shown in red. 
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in which HFOs (highlighted in red) were identified by PACT 
at the pathological and non-pathological recording sites.  

Computation times were as follows: A 37-channel, 275-s, 
data set with a sampling rate of 1000 Hz was processed using a 
3.2-GHz, 12-GB RAM Linux computer in 20 s (using 200 
surrogate data sets) or in 150 s (using 2,000 surrogates). 
Computational time is proportional to data length, number of 
channels, and inversely proportional to the LFO frequency 
range. These times do not include the time required for the 
LFO frequency-band scan, which was much slower because of 
the repeated application of high-pass filtering. Also, the lower 
the high-pass filter frequency band, the slower the 
computations. 

IV. LIMITATION 

First, both healthy and pathological cortical channel 
recordings showed PAC, suggesting a significantly large 
Modulation Index does not guarantee that an observed PAC is 
pathological. PAC characteristics in pathological and 
non-pathological channel data need to be fully investigated. 
Second, the highest-amplitude data sampling method treats a 
selected data percentage regardless of the presence or absence 
of true HFO events. Finally, there may be better inferential 
statistics for phase-sorted amplitude. 

V. CONCLUSION 

Here we demonstrated the application of PACT tools to 
simulated and actual ECoG data, and confirmed the potential 
usefulness of the tools for clinical research possibly leading to 
clinical application. The toolbox provides research 
neurologists and neuroscientists a tool for exploring 
cross-frequency phase-amplitude coupling which has recently 
been posited to be an important form of cortical dynamics [5]. 
Use of PACT methods in clinical practice might lower the 
burden on neurologists to visually inspect and evaluate large 
amounts of recorded ECoG data from each monitored patient. 
However, the clinical usefulness of PACT requires further 
clarification of differences between pathological  and normal 
PAC in epileptic and non-epileptic tissue. We hope that the 
development and release of PACT may contribute to further 
research in this direction. 

Recently, we have demonstrated that single channels in 
standard ECoG data are not independent of each other but, like 
scalp EEG channels (though to a lesser extent) each sum 
activities arising in more than one effective cortical source 
area [11]. It should be of interest, therefore, to apply PAC 
measures to independent components [12] of ECoG data to 
explore whether PAC phenomena show up more clearly in 
ICA-decomposed data [13][14]. 

The use of PACT is not limited to clinical research; it can 
also be applied more general scientific EEG (or MEG) 
research. PACT is freely available from the EEGLAB website 
of the Swartz Center for Computational Neuroscience at 
UCSD (http://sccn.ucsd.edu/wiki/PACT). 

ACKNOWLEDGMENT 

This study was supported by Japan Society for the 
Promotion of Science and by a gift from The Swartz 
Foundation (Old Field NY). 

REFERENCES 
[1] E. Asano, C. Juhász, A. Shah, S. Sood, H. T. Chugani, “Role of 

subdural electrocorticography in prediction of long-term seizure 
outcome in epilepsy surgery,” Brain, vol. 132, pp. 1038-1047, 2009.  

[2] J. Jacobs, M. Zijlmans, R. Zelmann, C. E. Chatillon, J. Hall, A. Olivier, 
F. Dubeau, J. Gotman, “High-frequency electroencephalographic 
oscillations correlate with outcome of epilepsy surgery,” Ann. Neurol., 
vol. 67, pp. 209-220, 2010. 

[3] T. Nagasawa, C. Juhász, R. Rothermel, K. Hoechstetter, S. Sood, E. 
Asano, “Spontaneous and visually driven high-frequency oscillations 
in the occipital cortex: intracranial recording in epileptic patients,”  
Hum. Brain Mapp., vol. 33, pp. 569-583, 2012. 

[4] A. Delorme, S. Makeig, “EEGLAB: an open source toolbox for 
analysis of single-trial EEG dynamics including independent 
component analysis,” J. Neurosci. Methods, vol. 134, pp. 9-21, 2004. 

[5] R. T. Canolty, E. Edwards, S. S. Dalal, M. Soltani, S. S. Nagarajan, H. 
E. Kirsch, M. S. Berger, N. M. Barbaro, R. T. Knight, “High gamma 
power is phase-locked to theta oscillations in human neocortex,” 
Science, vol. 313, pp. 1626-1628, 2006. 

[6] W. D. Penny, E. Duzel, K. J. Miller, J. G. Ojemann, “Testing for nested 
oscillation,” J. Neurosci. Method, vol. 174, pp. 50-61, 2008. 

[7] A. Widmann, E. Schroeger, “Filter effects and filter artifacts in the 
analysis of electrophysiological data,” Front. Psychol., vol. 3:233, 
2012. 

[8] P. Berens, “CircStat: a MATLAB toolbox for circular statistcs,” J. Stat. 
Softw., vol. 31, pp. 1-20, 2009. 

[9] S. Holm, “A simple sequentially rejective multiple test procedure,” 
Scand. J. Statist., vol. 6, pp. 65-70, 1979. 

[10] Y. Benjamini, D. Yekutieli, “The control of the false discovery rate in 
multiple testing under dependency,” Ann. Stat., vol. 29, pp. 1165-1188, 
2001. 

[11] Z. Akalin Acar, S. Makeig, G. Worrell, “Head modeling and cortical 
source localization in epilepsy,” 30th Ann Int Conf IEEE Engineer Med 
Biol Soc, EMBS 2008, Vancouver, BC. pp. 3763-3766. 2008 

[12] T. Bell, T. Sejnowski, “An information-maximization approach to 
blind separation and blind deconvolution,” Nural Comp., vol. 7, pp. 
1129-1159, 1995. 

[13] Z. Akalin Acar, J. Palmer, G. Worrell, S. Makeig, “Electrocortical 
source imaging of intracranial EEG data in epilepsy,” IEEE 
Engineering in Medicine and Biology Society, Boston MA, Sept. 2011. 

[14]  T. Mullen, Z. Akalin Acar, G. Worrell, S. Makeig, “Modeling cortical 
source dynamics and interactions during seizure,” IEEE Engineering in 
Medicine and Biology Society, Boston MA, Sept. 2011. 

 
Figure 3. High-frequency oscillation marked in red by the PACT data 

scrolling tool on the unfiltered electrocorticogram. The automated 
high-frequency oscillation detection successfully captures both transient 

spikes and frequent bursts of high-frequency oscillation (HFO). 
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