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Abstract— Research biobanks are often composed by data
from multiple sources. In some cases, these different subsets
of data may present dissimilarities among their probability
density functions (PDF) due to spatial shifts. This, may lead
to wrong hypothesis when treating the data as a whole.
Also, the overall quality of the data is diminished. With the
purpose of developing a generic and comparable metric to
assess the stability of multi-source datasets, we have studied the
applicability and behaviour of several PDF distances over shifts
on different conditions (such as uni- and multivariate, different
types of variable, and multi-modality) which may appear in
real biomedical data. From the studied distances, we found
information-theoretic based and Earth Mover’s Distance to be
the most practical distances for most conditions. We discuss
the properties and usefulness of each distance according to the
possible requirements of a general stability metric.

I. INTRODUCTION

Research biobanks are often composed by data from mul-

tiple sources: different hospitals, health services, physicians,

etc. A common research task consists in developing a hypoth-

esis or model based in the whole set of multi-source data.

However, dissimilarities in the probability density function

(PDF) among the different subsets of data may complicate

such research, lead to wrong hypothesis, or harm the further

use of results on new data. In addition, detecting such

dissimilarities may be difficult due to the heterogeneous

conditions present in biomedical research data: (1) variables

of different types (categorical, ordinal or not; and numerical,

continuous or discrete), (2) data coming from uni-modal or

multi-modal distributions, and (3) univariate or multivariate

data. We classify the presence of such dissimilarities in PDFs

as a problem in the stability of multi-source data, categorized

as a data quality (DQ) problem in [15].

Providing accurate information about the data stability

may help data managers and researchers to take decisions

during the definition and development of research studies,

as well as to feedback data providers about their acquisition

procedures. In addition, a generic metric comparable among

different studies, may provide a measurement of the degree

of stability of multi-source biomedical data as a DQ metric.

In this work, we have studied the applicability and be-

haviour of several pairwise PDF distances on a set of simula-

tions of data shifts based on the aforementioned biomedical

data conditions. These pairwise distances provide stability

information between pairs of sources. Hence, this study is
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the first stage towards the development of a global stability

metric for any arbitrary number of sources, where pairwise

PDF distances will serve as baseline measurements. We

present the results of such comparative study as well as a

discussion aimed to the next research steps.

II. BACKGROUND

In [18], several studies on biomedical DQ are reviewed.

Most focus on measuring DQ dimensions of a data repos-

itory as a whole, however, the concept of data source

agreement is introduced aligned with the problem we are

focusing. Besides, dataset shifts have also been related to

DQ problems [6][15]. Dataset shifts are dissimilarities in

the underlying distributions of data which can be originated

through the course of time or across spatial factors. Our aim

is to assign a distance to spatial dataset shifts among several

sources of data, as a measurement of the overall data source

agreement1.

Most studies aim to detect dataset shifts in data streams,

e.g. based on specific statistical tests [11] or distributional

divergences [8]. Some of these approaches can be suited to

obtain dissimilarity measures among the PDF of different

data sources. Some works have also been published compar-

ing PDF dissimilarity measures [12][4], although aimed to

image retrieval. To the best of our knowledge, no similar

comparisons have been carried out to assess the stability

among biomedical data distributions, envisaging the multi-

source, multivariate, multimodal and multi-type conditions,

as well as the adequateness to a global stability metric.

III. METHODS

A. Simulation

We evaluated the distances on a set of simulations to cover:

(1) variable types, (2) multi-modality, and (3) dimensionality.

We focused on numerical and categorical data, the most

common post-processed research data, which facilitate the

statistical analysis. In each simulation, two random datasets,

(a) and (b), were defined following the same statistical

distribution, where a null dissimilarity is expected. Then, we

sequentially increased their dissimilarity until a predefined

maximum state, where a maximum dissimilarity is expected.

Distances were measured at each dissimilarity level.

We started evaluating the effect of shifts in different

univariate variable types, covering (1) and (2). Simulation U1

consisted in a Normal N(µ ,1) continuous variable (cont.v.)

1The semantic compatibility among sources is out of the scope of this
work, where multi-source biobanks are uniformly represented.
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where dataset means µ(a) and µ(b) separated each other

—e.g. due to an acquisition device that becomes biased.

U2: N(µ ,1) cont.v. where dataset b becomes bi-modal as a

mixture of two Normal PDFs defined as 1
2 ∑c=1,2 N(µ

(b)
c ,1),

which component means µ
(b)
1 and µ

(b)
2 symmetrically sep-

arate from the original —e.g. due to the appearance of

a new pathological pattern. U3: Chi-squared χ2(k) cont.v.

where degrees of freedom k(b) separated from k(a) = 0 —

e.g. due to an increase in the occurrence of a biomarker. U4:

Binomial B(1, p) ordinal categorical variable (cat.v.) where

p(a) = p(b) = 0.5 shifted to 0 and 1 respectively —e.g. due

to variation in gender percentages in a diagnostic group.

U5: Multinomial Mult3(1, p) non-ordinal cat.v. which priors

shifted from an equal to a maximum difference state —e.g.

due to a variation in the number of uses of treatments.

The multivariate simulations consisted in a combination of

the previous variables, completing then (1), (2), and (3). M1:

bivariate N(µ,1) cont.v. which means separated respectively.

M2: bivariate N(µ1) cont.v. where dataset b becomes multi-

modal as a mixture which component means symmetrically

separated from the original. M3: two B(1, p) cat.v. where

p
(a)
1 = p

(a)
2 = p

(b)
1 = p

(b)
2 = 0.5 shifted to p

(a)
1 = p

(a)
2 =

1, p
(b)
1 = p

(b)
2 = 0. M4: a combination of a N(µ,1) cont.v.

with a B(1, p) cat.v. combining the shifts of U1 and U4.

B. Estimation of probability densities

To ensure the applicability to any non-parametric contin-

uous PDF, we estimated empirical PDF histograms of the

compared datasets using a Kernel-density smoothing method

(or Parzen-window)[3], with Gaussian kernels and establish-

ing the optimum bandwith based in [16]. Additionally, to

homogenize the support, we estimated the common PDF

from both datasets, and then, its bin centers were used as

reference to interpolate the PDF of the independent datasets.

C. Studied distances

PDF distances measure how far two statistical distributions

are in a metric space. A distance metric must be (I) non-

negative, (II) zero only if the two compared distributions are

the same (identity of indiscernibles), (III) symmetric, and

(IV) must satisfy the triangle inequality. Divergences also

provide a measure of dissimilarity, however, do not require to

be symmetric nor satisfy the triangle inequality. Distances are

then consistent with our purpose of a generic and comparable

stability metric.

One type of studied distances included the statistics ob-

tained in classical two-sample statistical hypothesis tests, in-

cluding parametric: Student’s t from t-test and Kolmogorov-

Smirnov test statistic, and non-parametric: Kruskal-Wallis

difference in mean ranks and the obtained χ2 statistic from

the Kruskal-Wallis test. We discarded the χ2 test statistic for

categorical data because it does not accomplish the identity

of indiscernibles condition of a metric. Despite these type of

distances are conceived for univariate2 numerical data, we

kept these tests for two reasons. First, we want to compare

their behaviour in univariate multi-modal data. And second,

dimensionality reduction of multivariate datasets may lead

to a univariate sample making these methods feasible. Other

advantage is that these statistics can be directly associated to

p-values which permit significance tests on the differences.

We also studied information-theoretic based distances,

which derive from Shanon’s entropy theory [5], including the

Jeffrey divergence and the square root of the Jensen-Shannon

divergence, both symmetrized versions of the Kullback-

Leibler divergence, the second also smoothed. We also

studied the Hellinger distance, which can be defined as

a metric version of the Bhattacharyya distance, commonly

used in Pattern Recognition. These distances belong to the

family of f -divergences[1][7], which measure the difference

between PDFs. The main advantage of these metrics to the

aforementioned statistics is that they apply to any type of

binned PDF. Jeffrey and Jensen-Shannon, nevertheless, can

not be measured when any of the PDFs has 0-probability bins

—e.g. a categorical value not present in a source—, hence,

in such cases an absolute discounting method was used to

smooth the estimated PDFs.

Finally, we studied the Earth Mover’s Distance metric

(EMD, a.k.a. Mallows or Wasserstein distance) [14]. EMD

calculates the minimum cost required to transform one PDF

into the other, using a predefined cost matrix of the prob-

ability mass flow between the bins in the support (ground

distances). Originally conceived for image retrieval, in recent

studies [2][9] EMD has been used to measure dissimilarities

in multidimensional distributions. EMD envisages inter-bin

information, in contrast to information-theoretic distances

which make bin-by-bin comparisons, however, involves a

higher computational cost. Additionally, EMD relaxes possi-

ble losses of information caused by binning, and permits

defining custom cost matrices. To adapt the multivariate

experiments to EMD algorithm, we embedded the two di-

mensions into one histogram using a normalized L1 ground

distance matrix.

IV. RESULTS

Figure 1 shows the results of the experiments. Each

distance was normalized between zero and one to facilitate

the comparison. As expected, in all simulations the evaluated

distances behave monotonically increasing. In addition, all

distances begin in 0, and we can observe that while most

converge in continuous tests, these are approximately linear

in discrete.

In experiment U1 non-parametric statistics behave simi-

larly, converging around a distance between means of 4σ .

Information-theoretic distances behave similarly, except Jef-

frey divergence, which begins convex and converges when

the tails of the PDFs leave each other. The t-test statistic

2Bivariate Kolmogorov-Smirnov test approaches [13] require further
study since in d-dimensions imply 2d

− 1 possible orderings. MANOVA
tests entail a linear combination of the two or more normally-distributed
dependent variables.

3227



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Standard deviations between µ
(a)

 and µ
(b)

N
o

rm
a

liz
e

d
 d

is
ta

n
c
e

(a) U1: N(µ(a) ,1) vs. N(µ(b) ,1)
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(b) U2: N(µ(a) ,1) vs. 1
2 ∑c N(µ

(b)
c ,1)
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(c) U3: χ(0) vs. χ(k(b))
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(d) U4: B(p(a)) vs. B(p(b))
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(e) M1: Bivariate test of U1
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(f) M2: Bivariate test of U2
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(g) M3: Bivariate test of U4
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(h) M4: Bivariate test of U1 and U4 mixed

JF JS EMD HL KW-D KW-H T KS

Fig. 1. Results of univariate, (a), (b), (c) and (d), and multivariate, (e),
(f), (g) and (h) experiments. JF: Jeffrey, JS: Jensen-Shannon, EMD: Earth
Mover’s Distance, HL: Hellinger, KW-D: Kruskal-Wallis mean rank differ-
ence, KW-H: Kruskal-Wallis statistic, T: t-test statistic, KS: Kolmogorov-
Smirnov statistic.

behaves linearly, since we are separating two Normal PDFs

with equal variance. The EMD resultant function also con-

verges, but later.

In U2, t-test and Kruskal-wallis statistics were not able

to capture the bi-modal shifting —despite the dissimilarity,

sample means were the same— resulting in zero. The rest

of distances behave equivalently to U1, capturing the bi-

modality.

In U3, distances behave similarly to U1, but as it can be

appreciated in t-test series, PDF means did not vary linearly

with the shift in degrees of freedom.

Categorical simulations U4 and U5 resulted in equivalent

results in information-theoretic and EMD distances. How-

ever, statistics distances were not applicable to U5, since

non-ordinal categorical. Thus, we only show the results of

U4, where the first are equivalent. Due to the linear shift

in probability masses in these categorical experiments —

in contrast to when separating Normal PDFs— none of the

distances resulted convex. In addition, some captured this

linear density shift resulting in linear functions. Despite the

smoothing, we can observe in the Jeffrey distance series the

tendency to infinite with smoothed 0-probability elements in

the last iteration.

Results of multivariate experiments M1 and M2 are

equivalent to their univariate relative U1 and U2, with the

exception that statistic tests were not applicable. Thus, all

distances converge, although EMD does later. Analogously,

the results in Binomial experiment M3 are equivalent to those

in U4. We can appreciate, however, slight differences in the

results of mixed variable types experiment M4: while Jensen-

Shannon and Hellinger distances seem to average the results

of its independent continuous and categorical shifts, the EMD

transformation cost seem to be slightly higher across the

central iterations due to the abrupt density flow through the

categorical dimension —we remember that EMD envisages

inter-bin information.

V. DISCUSSION

We come back to the studied conditions: (1) variable

types, (2) multi-modality, and (3) dimensionality. Biomedical

data can be considered heterogeneous and multi-modal by

nature. Even univariate data may be formed by different

‘natural’ components, such as a mixture of healthy and

different components of unhealthy parameters, or ‘artificial’

components, such as differences in the quality of data among

their generating sources. Thus, an effective distance must be

able to capture the dissimilarity in any of these conditions.

Regarding to the evaluation of (1), only information-

theoretic and EMD are suited to any type of variable —

statistics are only to numerical. Additionally, EMD is the

only distance which permits setting specific costs to the

difference between categories in unordered categorical data.

Regarding to (2), t-test and Kruskal-Wallis had problems

detecting multi-modality (U2, M2), however, Kolmogorov-

Smirnov, information-theoretic and EMD were successful.

Thus, despite the advantage of information-theoretic and

EMD in (1) (and as we will see next, in (3)), Kolmogorov-

Smirnov might still be used for obtaining a p-value on the

difference in a continuous univariate variable resultant from

a possible dimensionality reduction on multi-type data. At

this point, information-theoretic and EMD distances seem

the most practical for most situations. From these, we may

consider the issue with null-probability elements of Jeffrey

divergence a reason for discarding it. We can also observe

that Jensen-Shannon and Hellinger are within a small con-

stant each other [10]. Additionally, as we already mentioned,

EMD is able to capture inter-bin information, and it is

possible to define any cost between them, what may be useful

in categorical data or when grouping PDF signatures [14].

Finally, regarding to the evaluation of (3), we already

mentioned that statistics distances were not suited to multi-

variate data. In contrast, information-theoretic distances and

EMD are theoretically suited to any number of dimensions.

3228



However, direct estimation of PDFs in high-dimensional

biobanks may be impractical due both to computational

requirements and sparsity in the probabilistic space. Hence,

dimensionality reduction methods may be applied to make

feasible low-dimensional distances. For instance, we could

reduce the dataset into a lower-dimensional statistical man-

ifold. Additionally, in massive-data environments, we could

represent groups of similar cases based in PDF signatures to

facilitate the distance calculus.

On the other hand, results show that, in general, most

distances have a convergence limit. They converge when

the volume of the joint density between the two PDFs is

minimized converging as well. However, EMD does later,

what may suppose two advantages. First, it behaves approxi-

mately linear until the saturation level of those that converge

first. And second, it can still express dissimilarity farther

from this level. Furthermore, a bounded PDF support, e.g. in

categorical data or bounded continuous, obviously entails a

maximum limit in all the distances. Under these assumptions,

we may choose between using the Jensen-Shannon, Hellinger

or EMD, depending on the dissimilarity level at which we

need the distance to converge.

To be generic, pairwise measurements should provide a

dissimilarity level comparable across different datasets, or

even different domains —imagine we wish to provide a sta-

bility mark in a DQ consulting. Jensen-Shannon, Hellinger,

and Kolmogorov-Smirnov distances are bounded by defini-

tion between zero and one, what applies here (Kolmogorov-

Smirnov, however, did not achieve its maximum value in

the bimodal experiment (U2)). On the other hand, we no-

ticed that the normalization applied to the EMD ground

distance matrix, where a maximum cost of 1 is given when

moving density between extreme bins, makes comparable

the resultant transformation cost. This solution, however,

requires predefining the possible support of all variables in

order to identify the maximum inter-bin costs —equivalent

to establishing the bounds of the probabilistic space.

We have not focused on other common types of biomedical

data such as free text, signals or images. In some research

tasks, a specific preprocessing may be used to obtain quan-

titative or qualitative measurements which will permit the

use of the methods presented in this work. For instance, the

Quantitative Magnetic Resonance (MR) methodology [17]

is based on different quantitative parameters from brain MR

images or MR spectroscopy signals, which may be used to

assess the stability across radiology data sources.

VI. CONCLUSIONS

Providing information about the stability of biomedical

research data among its sources may be of crucial im-

portance. We have studied the behaviour and application

of pairwise PDF distances on simulations of multi-type,

multi-modal and multivariate conditions of biomedical data.

Distances based in hypothesis contrast statistics are only

suited to numerical univariate data, and have difficulties

in multi-modality. Information-theoretic distances and EMD

can handle multivariate, both continuous and discrete, and

mixed types data. In general, all distances converge when the

joint probability mass between the compared PDFs converges

to the minimum, however EMD does later, what may provide

more versatility in bounded supports. Additionally, EMD

permits setting custom inter-bin costs. These results establish

the basis for further studies of a general stability metric.

Additionally, in further work we will generalise this study

to real biomedical data studying the effect of dimensionality

reduction methods on the PDF distances.
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