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Multivariate Temporal Symptomatic Characterization of Cardiac Arrest
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Abstract— We model the temporal symptomatic characteris-
tics of 171 cardiac arrest patients in Intensive Care Units. The
temporal and feature dependencies in the data are illustrated
using a mixture of matrix normal distributions. We found that
the cardiac arrest temporal signature is best summarized with
six hours data prior to cardiac arrest events, and its statistical
descriptions are significantly different from the measurements
taken in the past two days. This matrix normal model can
classify these patterns better than logistic regressions with
lagged features.

I. INTRODUCTION

Cardiac arrest, a sudden failure of the heart, is a life-
threatening condition with an in-hospital mortality rate of
~ 80%. Research has shown that ~ 62% of cardiac arrests
could have been prevented based on clinical evidence prior
to the event [1], [2]. Studies have also shown that a quick
response to cardiac arrest can decrease the mortality rate to
60% [3]. However, prediction systems are unable to accu-
rately identify high-risk patients with sufficient intervention
time [2].

Early warning systems use physiologically-based criteria
to detect patient deterioration [4], [5], [2]. However, these
systems fail to capture temporal patterns in the physiological
measurements [6]. Common approaches for incorporating
temporal data are lag features [6], encoding temporal patterns
within the data [7], [8], and dynamic time series model [9],
[10]. We propose a matrix-variate approach to characterize
cardiac arrest patients’ changes.

II. MATRIX NORMAL DISTRIBUTION

The matrix-variate normal distribution, shortly “matrix
normal distribution”, is a probability distribution that gener-
alizes the multivariate normal distribution for random matri-
ces. A nxp random matrix Y is drawn from a matrix normal
distribution, if its probability density function follows:

p(YIM,Q, %) = %exp(—%tr[ﬂ_l(Y—M)TE_I(Y—M)])

where M,,», is a location matrix, 2,4, and X,y
are scale matrices. The normalization constant ¢ is
(2m)"P/2|Q|"/2|2[P/2. The first and second moments are
given as M = E[Y], ¥ = E[(Y — M)(Y — M)7],
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and Q o< E[(Y — M)T(Y — M)]. As p(Y|M,Q, %) =
p(Y|M, rQ2, 32 /r) for any r £ 0, Q and X are not separately
identifiable.

A  matrix-normal random matrix Y drawn from
p(Y|M, Q,X) is related to its vectorized form vec(Y)npx1
as follows [11]:

vee(Y) ~ N(vec(M), 2@ X) (1)
where ® represents the Kronecker product. The Kronecker
product between €2 and ¥ is defined as:

w112
QX = : : 2)

w,,lE

w1p2

wppz npxnp

where w;; is an (7, j) element of 2. For a multivariate normal
distribution, its corresponding matrix normal distribution is
a special case with the covariance structure in Equation (2).
This covariance structure models the dependencies between
rows and columns. This additional structure reduces the num-
ber of unknown covariance parameters in the multivariate
normal distribution. For an (np)-dimensional multivariate
normal distribution, the number of unknown covariance pa-
rameters approximately drops from (np)? to n?+p? with this
constraint. The matrix normal distribution has been applied
in various fields such as dynamic models [12], Bayesian
analysis [13], matrix regression [14], tensor data [15], and
multi-task learning [16].

ITII. MULTIVARIATE TEMPORAL SIGNATURE

We have a stream of data D = [yi1,y2, - ,yr] where
y: is a p dimensional measurement vector and its subscript
t indicates the time of the measurement taken. We define
a measurement block Y; with n-time sliding window as
follows:

7Yt]T (3)

where its dimension is n X p. From its construction, the
rows of Y, are temporally correlated, and the columns of
Y might have correlated measurements. These dependencies
can be modeled using the matrix normal distribution.

Our objective is to capture a symptomatic characteristic
prior to a cardiac arrest event. We hypothesize that two
latent states govern the measurement block process: risky and
normal states. We model the measurement block process as
a dynamic mixture of matrix normal distributions. Figure 1
shows the idea of this process. K; represents the latent
state at time ¢t where K; € {risky,normal}. Based on
the state, the corresponding parameters {Mj, Qy, X} are
chosen, then Y, is drawn from the matrix normal distribution
p(Yt‘Mk, !]]€7 Zk).

Y= [yt7n+1> Yt—n+42,-
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Fig. 1. Graphical model of the mixture of matrix normal distributions

In this paper, we postulate that the risky states appear
right before the cardiac arrest events. The normal states are
the latent states significantly before the events. For example,
a measurement block Y_, where s > 0 is drawn from the
normal state distribution. The optimal time window n and
the normal state time offset s are obtained through cross-
validations (see Section V). Our algorithm is as follows:

1) Estimate {M}, Qy, X} from training data as follows:

My, =~ AVEae(t)—=k Yt @)
Qk ~ Avgslale(t) k(Yt - Mk)T(Yt o Mk) (5)

ﬁ:k ~ Avgs[ate(t):k (Yt - Mk)(Yt - Mk)T (6)

2) For a new data block Y, calculate the likelihood
ratio:

L= p(Ytesl|Mrisky; Qriskya Erisky) (7)
p(Ytest | Mnormal 5 Qnormal 3 Z:normal )
3) If £ > Oreshold> label the state of Y as the risky

state. Otherwise, label it as the normal state.

The risky state parameters illustrate the multivariate tem-
poral symptomatic characteristics of cardiac arrest events.
The mean matrix M, summarizes the overall trajectories
of the measurements within n-time window. The temporal
covariance matrix X, describes the individual variations
from the global trajectories. The feature dependencies near to
the events appear in the feature covariance matrix gy. The
parameters for the normal state can be similarly interpreted.

IV. EXPERIMENT
A. Data

Our study was conducted on patients at least 18 years of
age at time of admission from the MIMIC-II database [17]
who had an asystole event. We focused on four common
clinical measurements prior to cardiac arrest time: heart
rate, respiratory rate, diastolic blood pressure and systolic
blood pressure. Data was discretized into 2-hour bins starting
when a patient has a least one observation per measurement.
Additionally, we required at least 40 discrete time slices (~
3 days) for each patient to ensure sufficient number of data
points.

We identified 421 cardiac arrest patients with asystole
from 27,542 adult hospital admissions. 171 of the 421 cardiac
patients met the minimum data requirements. On average,
patients had 85 time slices with a standard deviation of
20. We assumed unobserved measurements were missing
at random and used the zero-order hold [18], maintaining
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Fig. 2. Examples of blood pressure measurements (mmHg) prior to cardiac
arrest.

the last observed value. Figure 2 shows the blood pressure
measurements for three patients starting two days prior to
the cardiac arrest event.

B. Evaluation Measure

We evaluated the performance of the matrix normal model
against logistic regression models with lagged features.
Leave-one-out cross validation was used; each model is
trained on the remaining 170 patients, and tested on the one
hold-out patient. With 171 leave-one-out scores and their true
labels, we randomly sampled 171 patients with replacement,
and measured the Area Under Receiver Operating Charac-
teristic (AUROC). This procedure is iterated over 100 times;
we estimated AUROC using 100 bootstrapped bags.

V. RESULTS

A. Optimal Time Window

We examined four different time windows to characterize
the pre-event condition: 2 hr, 4 hr, 6 hr, and 8 hr. Figure 3
shows the differentiability of the risky state from the normal
state for each time window. The area under the curve
(AUROC) expresses the differentiability between the two
states; the higher AUROC, the more differentiable. The two
hours window, which is basically one dimensional vector,
does not utilize any temporal information, thus it shows the
worst performance. As can be seen, the six hours window,
which consists of 3 measurement slices, exhibits the best
performance (the highest AUROC value) among these four
candidates. The eight hours window performs worse than the
six hours window. The eight hours may contain more noisy
and extra information than the six hours window. The cardiac
arrest pre-symptoms are best captured and distinguishable
with the six hours data before the event.
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Fig. 3. Classifying the risky state with different time windows.
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Fig. 4. AUROC scores when classifying two different measurement blocks.
Y _458 and Y _24 denote the measurements from two and one days before,
respectively.

B. Representative Normal State

In the matrix normal model, the normal states are the latent
states significantly before the events, and its offset s needs
to be derived from the data. A patient in an Intensive Care
Unit (ICU) is mostly with seriously injuries and illness. Any
measurement taken in an ICU cannot be the representative
normal state.

We estimated the matrix normal parameters from three
sets of data: 2-day before, 1-day before, and the day of
the event. Figure 4 shows their pair-wise AUROC scores.
We picked two datasets, and assigned one of them as the
positive class and the other one as the negative class. The
pair-wise AUROC scores are measured from the hold-out test
data. As can be seen, the data blocks from the past 2-days
are the most noticeable and distinguishable from the risky
state data blocks. Thus, we set the D-2 data blocks to be the
representative normal state data.

C. Multivariate Temporal Signature

Figure 5, 6, and 7 show the estimated matrix normal
parameters: My, ., and 3. In Figure 5, we observe that
the four measurements in the normal state remain constant
over time, while these measurements exhibit descending
slopes in the risky state. Noticeably, the heart rate at the
risky state starts from 90.5 bpm, which is higher than the
normal state. The feature covariance matrices shown in
Figure 6 appear approximately the same each other. The
dependencies between features are not affected by cardiac
arrest events. As can be seen in Figure 7, the normal and
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risky temporal covariance matrices are significantly different.
The measurements in the risky state typically fluctuate with
a large amplitude, resulting in this large covariance matrix.

D. Comparison with Logistic models

Logistic regression models can incorporate temporal infor-
mation using lagged features. We built three types of logistic
models as follows:

o Logit.2hr: logit( E[state|y,]) = B2 y:

o Logit.4hr: logit(E[state|y:.;1]) = B3 [ye; yi_1]

o Logit.6hr: logit(E[state|y.—a]) = Bg [ys; Yi—1;yi—2]
Figure 8 shows the leave-one-out AUROC scores for 1)
these three logistic models, 2) the matrix normal model,
and 3) an ensemble of the matrix normal model and the
Logit.4hr model. Logit.6hr is over-fitting to the training
data, resulting in the lower AUROC scores than the scores
from Logit.4hr. The matrix normal model well captures the
dynamic signature of the cardiac arrest pre-conditions. As
can be seen, the matrix normal model outperforms these
three logistic models. The ROC curves of these three models,
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Fig. 8. AUROC scores from five different models. The matrix normal

model outperforms the family of logistic regression models with lagged
features.

which are not shown due to the page limit, show that the
logistic models and the matrix normal model characterize the
cardiac arrest from different angles. As a result, the ensemble
of these two models improves the AUROC scores from the
both models.

VI. DISCUSSION

In this paper, the multivariate temporal signature of cardiac
arrest is characterized using the matrix normal model. The
presented model explicitly models the dependencies between
temporal and feature domains. The estimated parameter
matrices intuitively illustrate the measurement process and
its underlying states.

This matrix normal model can be enhanced from several
aspects. The optimal time window and the representative
normal state can be obtained incorporating physicians’ do-
main knowledge. The latent state of the signal blocks can
be learned using clustering algorithms. With modeling the
possible interventions in ICU’s, this model can be further
modified to predict the actual event time. Finally, this model
can be extended to deal with other types of diseases and
conditions, providing the temporal characteristic taxonomy
of various diseases.
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