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Abstract² In the present study, we developed a mental 

switch-based asynchronous brain-computer interface for 2D 

cursor control. Two mental switches were designed: one was to 

switch from non-intentional to intentional control state, and the 

other one for conducting the reverse process. 2D control and 

mental switches are all based on three-class motor imagery. 

With four subjects participating in the study, the experimental 

results demonstrated the efficiency of the proposed 

asynchronous 2D control strategy. 

I. INTRODUCTION 

Brain-computer interface (BCI), as an assistive technology, 
can help patients suffering from cortical or spinal injuries. BCI 
enables them to communicate with the external environment 
through translating their brain activity to commands [1], 
without using the normal pathways of peripheral nerves and 
muscles. 

Based on the signal acquisition method, BCIs fall into two 
main categories: invasive BCIs and non-invasive BCIs. In 
invasive BCIs, micro-electrodes are planted into the user¶s 
cortex to record signals with high signal-to-noise ratio (SNR), 
which then accurately translated into commands. However, it 
can increase the risk of brain infection [2]. In non-invasive 
BCIs, electroencephalogram (EEG)-based BCIs are widely 
used as they are easily recorded from the surface of scalp [3]. 
Depending on the operation protocol, BCIs can be used in 
synchronous and asynchronous modes. In the synchronous 
mode, the subject controls the BCI following a visual cue 
provided by the system [4]. However, the synchronous BCI is 
not convenient for communicating with other devices or 
external environment, since it strictly follows the cue. On the 
contrary, the asynchronous (self-paced) mode is a natural 
course of interaction that generates commands following the 
user¶s intent [5, 6]. 

The significance of asynchronous BCI system is that the 
user can make self-paced decisions to switch between 
non-intentional control (NC) and intentional control (IC) 
states. Since in asynchronous mode, the system can 
continuously detect the state of the intention. One main 
challenge of the asynchronous BCIs is the high false positive 
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rate during the NC state, which is always frustrating for the 
user. To reduce the false positive rate, mental task based 
switch, which needs to be stable and easy to control, was 
applied to transform the system from NC to IC. As reported by 
Mason et al., a low-frequency asynchronous signal detector 
switch based on the 1-4 Hz feature set can differentiate the 
attentive idle from real movement-related EEG. However, it 
was only verified through real movement, and not by motor 
imagery (MI) [7]. Subsequently, the low-frequency 
asynchronous brain switch was improved and shown to be 
applicable to motor imagery and attempted movement. It was 
reported that spinal-injured subjects could operate it as well as 
able-bodied ones [8, 9]. Muller et al. developed an event 
related synchronization (ERS) detection based brain switch, 
which monitored the ERS of the foot motor imagery (MI) in 
Cz electrode. The true positive rate and the positive predictive 
value were 79% and 84% respectively [10]. Hasan et al. used 
an onset detection method to classify the recorded EEG into 
real movement and idle state; however, the average of 
true-false difference was only 88% for the onset detection of 
the real movement [11]. Qian et al. developed a brain switch 
by detecting the event related desynchronization (ERD) of MI 
of finger repetitive pinching, which took a long time to 
activate the switch [12]. Kato et al. also introduced a BCI 
switch based on the contingent negative variation related 
potentials between warning and imperative stimuli to startup 
or shutdown BCIs. This visual stimulus may increase the users¶ 
workload and consequently lead to eye fatigue [13]. Majority 
of the previously mentioned studies validated the feasibility 
and effectiveness of the proposed switch strategies without 
applying them to real applications. In Robert et al. study, a 
switch based asynchronous BCI, which detects band power of 
EEG to shift between IC and NC states, was introduced [14]. 
In that system, the subject carries out limited operations to 
navigate in the virtual environment. 

In order to implement an asynchronous BCI system, 
asynchronous protocol and application need to be considered 
simultaneously. Multi-dimensional control as in 
brain-actuated wheelchair or cursor control has drawn 
considerable attention in the field of BCI research. However, 
in real applications, self-paced 2D control has gained more 
interest. Millan et al. presented an asynchronous 
brain-actuated mobile robot system by combining three-class 
MI with an intelligent robot, which achieves 74% performance 
of manual control. [15]. Zhao et al. introduced a 
threshold-based asynchronous BCI system to classify current 
states as NC providing the classification accuracy to be lower 
than 90% [16]. This condition, however, was difficult to meet 
in most of the subjects. Scherer et al. trained two specialized 
classifiers: classifier 1 to distinguish between IC and NC states, 
and classifier 2 to identify MI tasks [17]. Chae et al. employed 
the intentional activity classifier and the move direction 
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classifier to identify a feature belonged to NC or a specific 

mental task [ 18]. 

To design a practical asynchronous 2D control system, we 
introduced a two-switch based asynchronous BCI. We applied 

one switch to transform from NC to IC, and the reverse state 
transformation is using different one. The switches and 2D 

cursor control are based on a three-class motor imagery BCI. 

II. METHOD 

A. Signal processing 

In this work, three-class motor imagery (left hand, right 
hand, and feet) is applied to implement an asynchronous BCI 

for 2D cursor control. Different MI tasks have distinct spatial 
patterns. Common Spatial Pattern (CSP) is used to extract the 

EEG spatial features by maximizing the difference between 
tasks [19, 20]. To obtain control commands, a linear Support 

Vector Machine (SVM) classifier is applied to discriminate 
the three-class MI patterns. However, to design switches and 

2D control paradigm, the predicted probabilities of SVM 
classifier are used as an alternative to the discrete 

classification results. 

B. System strategy 

1) ONSwitch: An ONSwitch, which based on a threshold 
of predict probability and time course (Fig. 1 ), was used to 

transform the system from NC state to IC state. The 
system initially remains in the NC state. To switch it on, 

the user conducts one of the three motor imagery tasks to 
make the corresponding probability exceed a threshold in 

the course of /'1 t. The threshold value is inversely related 

to length of the time course. The ONSwitch is switched on 

faster ifthe user achieves a higher predict probability in a 
time course. 
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Figure 1. Illustration of ONSwitch strategy. 

2) 2-D movement control strategy: We mapped the 

output probabilities (P1 , P2 , and P3 are the probabilities 

of left hand, right hand, and feet respectively) of SVM 

classifier to three vectors with the angle interval of 120° 

(as shown in Fig. 2(a)). The norms of vectors are chosen 

based on the values ofrelated output probability. To move 
the cursor to the upper right, the subject combines two 

related motor imagery tasks (left and right hand motor 

imagery) to generate initial velocity vector Va with 

ignoring unrelated motor task (feet motor imagery), which 
indicates the smaller probability of it. When the cursor 

begins to move, its acceleration and direction can be 
controlled by the user. In order to tum right, the subject 

focuses on the right hand MI and ignores the others. The 

combinations of probabilities will be a new vector V1a. To 

avoid changing velocity too fast, we use an attenuation 

factor a within the range of [0.1 l]. The current velocity 
~ ~ 

vector V1 is synthesized by a * V1a and original velocity 

vector Va (As shown in Fig 2.b). 
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Figure 2. (a) Mapping of predicted probabilities to velocity vectors. (b) 

The process of syn the ti zing velocity vectors. ( c) Illustration of 

3) OFFSwitch: As a car approaching the destination, the 

driver needs to gradually slow down the car and finally 
stop it. In the same way, when the cursor is close to target, 

the subject should slow it down and eventually stop it. 
Combination of multi-tasks motor imagery is applied to 

synthesize a deceleration vector Vd to slow down the 
cursor (shown in Fig. 2(c)). When the speed of the cursor 

is lower than one pre-setup threshold ( y ), the system is 

switched to NC state. 

III. EXPERIMENTAL SETUP 

A. Subject 

Four healthy subjects (all males) aged from 19 to 25 

(average 21.5 ± 2.65) participated in this study. Two of these 

subjects had previous experience of MI and the other two 
subjects were naive. All of the subjects were in good health, 
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and they submitted their consent to be involved in the study. 

They received a payment for their participation. 

B. EEG recording 

Subjects sit in a comfortable chair at a distance of 80 

centimeters from the computer screen. EEG signals were 
acquired by a 16-channel g.USBamp amplifier, and the 

recording electrodes were placed according to the 
international 10-20 system. 13 channels (FC3, FCZ, FC4, C5, 

C3, Cl, CZ, C2, C4, C6, CP3, CPZ, and CP4) were used to 
record the EEG data, the ground and the reference electrodes 

were respectively placed on the FZ channel position and right 
earlobe. EEG signals were sampled at 256 Hz, and band-pass 

filtered between 5 and 30 Hz. 

C. Online Experimental Paradigm 

1) Three-class motor imagery training: All subjects 

attended a normal three-class MI BCI training program. 

Based on their experience, the number of training sessions 

was different for each of them. The training sessions 

would not stop until the classification accuracy of each 

motor imagery task was above a threshold (85%). 

Afterwards, the subject could proceed to the next 

experiment. After the normal motor imagery training, the 

subject would attend two additional runs during which the 

classifier model was trained to be applied in cursor control 

experiment. 

-------I440PixeJs-------

Figure 3. The sketch map of the experimental paradigm. Color of the 

target balls changes from blue to green in order of 1 to 5. 

2) Asynchronous 2-D Cursor Control Online 
Experiment: To test the asynchronous protocol, a 5-target 

experimental paradigm was designed as shown in Fig. 3. 

The red ball indicates the initial position of the cursor, the 
other five circles are target positions. The ratio of the size 

of the cursor, the size of the target, and the size of the 
experimental workspace is 0.00064:0.0025:1. As 

previously mentioned, the ONSwitch is identified by the 

threshold of predicted probability and its time course /'1 t. 

Considering the unstable performance of the subject, 

three types of conditions were specified for the ONSwtich. 
They, on the order of complexity, include; (1) threshold 

0.8 with l.5s; (2) threshold 0.85 with l.Os; and (3) 

threshold 0.9 with 0.5s. The constants a was set to be 0.2. 

In the OFFSwitch, the threshold y was set to be 0.8 pixels. 

Initially, the position of the cursor is fixed. The first target 

changes from blue to green before the cursor begins to 
move. The subject opens the ONSwitch to move the 

cursor. While the cursor approaches the target, the subject 
tries to slow it down and gradually stops it by using the 

OFFSwitch. If the cursor is stopped, the trial ends and the 

current target's color changes from back to blue. If the 

subject cannot finish a trial in 60s, the trial is shut down, 

and the next target is changed to green. After hitting all 
the five targets, one run ends. 

IV. RESULTS 

Subject 1 and subject 4 completed 15 runs. Subject 2 and 
subject 3 only finished 13 and 12 runs respectively (As shown 

in TABLE I ). The average hit rate is 94.1 % within 100.8s. 

Subject 3 achieved the best performance with 100% hit rate 

and the average run time of 72.7s, while subject 2 achieved 
acceptable performance with 83% hit rate. All the missing 

targets indicate failure of stopping cursor. 

TABLE I. CURSOR CONTROL PARADIGM PERFORMANCE. 

Subject NO Hit Rate(%) Average Move Time 

Run Target 
Of 

Finished Run (s) 

SI 15 75 96.0 85.2 

S2 13 65 83.1 134.3 

S3 12 60 100.0 72.7 

S4 15 75 97.3 110.0 

Mean 68.75 94.1 100.8 

SD 7.5 7.5 27.3 

To evaluate the efficiency of the ONSwitch, we calculated 

the percentage of each type of the ONSwitch being used by 
each subject. As shown in Fig. 4, all the subjects mostly used 

type 3 to activate the ONSwitch, which means they can switch 
from NC to IC in 0.5s. Type 1 and type 2 of the ONSwitch 

were rarely used. 

100.0% 

80.0% 

60.0% • Typel 

40.0% 
• Type2 

20.0% 
• Type3 

.0% 

51 52 53 54 Average 

Figure 4. The statistics for ONSwitch styles 

The performance of the OFF Switch is shown in Fig. 5. The 
average time of activating the OFFSwitch is 7.5s. Subject 2 

always needed longer time to stop the cursor. Subject 3, on the 
other hand, used an average of 3 s to stop the cursor. 

triall trial2 trial3 trial4 trials 

• 51 

• 52 

• 53 

• 54 

Figure 5. The average time to activate the OFFSwitch. 
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 Specificity and sensitivity are commonly used to evaluate 
the performance of asynchronous systems. In proposed 
methods, false positive indicates random ONSwitch happen in 
the NC state, and false negative represents false stop. False 
positive is equal to 0, which makes the specificity for the four 
subjects be 100%. This means the ONSwitch will not be 
activated randomly. The subjects achieved the average 
sensitivity of 95.7%, while subject 1 and subject 3 gained the 
highest value of 97.1%. 

TABLE II.  COMPARATIVE RESULTS OF SENSITIVITY AND SPECIFICITY 

Subject Sensitivity (%) Specificity (%) 

S1 97.1±2.6 100 

S2 92.9±2.9 100 

S3 97.1±3.3 100 

S4 95.8±3.0 100 

Mean 95.7±3.3 100 

V. DISCUSSION 

In this work, two mental switches are designed based on 
motor imagery. The ONSwitch is easily controlled by the 
subjects (Fig. 4). While it is highly reliable, it can adapt to 
different performance of the subjects. The ONSwitch is 
designed based on the probability threshold and a time course, 
which on the case of applying only the probability threshold, 
the ONSwitch will be randomly activated. For the OFFSwitch, 
it needs a large amount of time to stop the cursor, normally the 
subjects can stop it over 94%. The subjects reported the 
absence of an obvious indication for current direction of the 
cursor, which makes it difficult to generate the deceleration 
vector in its opposite direction. In the future work, visual 
feedback of current direction of the cursor will be provided to 
help the subject to stop the cursor. 

VI. CONCLUSION 

In this work, we develop a mental switch based 
asynchronous BCI system, which enables the user to 
attentively switch on and off the cursor and to move it to 
arbitrary positions. The subject can achieve self-paced 2D 
cursor control through applying only three classes of motor 
imagery. The experimental results demonstrate the 
effectiveness of the proposed strategies. 
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