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Abstract—Event-related potentials (ERP)-based image triage 

(or search) in the context of Rapid Serial Visual Presentation 

(RSVP) exploits difference in the human brain response to target 

and distracted stimuli in the form of an image. So far, most 

paradigms focus on image triage (or search) among rough object 

categories. In this paper, we explored the possibility and 

effectiveness of target detection among finer categories like 

different animals. We analyzed on the difference of ERP 

components in two image search tasks, a simple-recognition task 

in which all images of a target are the same and a 

discriminative-recognition task in which all images are 

randomly different but belong to the same target category (the 

same kind of animal). We observed that the P3 amplitude 

reduced and the P3 latency delayed on the 

discriminative-recognition condition due to the increased 

difficulty of identifying different images belonging to the same 

category. But the average area under ROC curve reached 0.82 

which indicated that rapid target detection among finer  

categories by single-trial ERP were feasible with trivial 

contribution of N1 and stable contribution of N2 and P3. 

I. INTRODUCTION 

In recent years, more and more attention has been paid to 
efficient image search through huge amounts of images in 
many domains. Systems fully based on computer vision have 
proven to be infeasible or ineffective for search tasks due to 
problems of limited accuracy and throughput. In contrast, 
human vision with its superb recognition capability, which 
inherently associates with contexts and semantics, makes itself 
attractive and promising in the application of image search. 
And it is electroencephalography (EEG) generated from 
human’s scalp during human cognitive process that makes it 
possible to utilize human vision to develop effective image 
search systems. In practical use, sets of images which 
including target images are always displayed to human 
consecutively in a rapid speed, which is generally called 
RSVP i.e. rapid serial visual presentation, since this paradigm 
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can naturally provide high throughput in a relatively short 
period of time. And the key point is to exploit the difference of 
EEG evoked by intended images and distracted images during 
presentation. 

Event-related potentials (ERP) are certain electrical 
activities of human brain in response to brief visual stimuli [1]. 
Previous studies have certified that ERP which reflect the 
underlying human cognitive process can be used to indicate 
the emergence of certain target images in a RSVP task. For 
instance, an object categorization system was built to classify 
images containing animals, faces and inanimate objects based 
on EEG in [2]. Jun Wang and et al. proposed a BCI-VPM 
image annotation system in which objects of interest was 
detected first from a subset of the initial image database which 
includes 62 object categories (like airplane, anchor, Buddha 
and etc.)[3]. Huang and et al. designed an ERP-based target 
detection system to detect scale satellite imagery containing 
surface-to-air missile sites from those containing no targets[4]. 
It is easy to notice that the prior works mainly focus on 
detection among rough categories, i.e. categories with large 
difference in semantics, whereas few works have been found 
to tell whether it is possible to do effective detection or search 
among finer categories, e.g. categories of different animals, 
categories of different cars. The similar semantics between 
finer categories may seriously mislead human and increase the 
tendency to regard nontargets as targets during rapid 
presentation of images. 

The purpose of this article is to study the possibility of 
target detection among finer categories and contributions of 
different ERP components. For the sake of simplicity and 
typicality, eight common animal categories were chosen for 
our study for ensuring not so huge difference in difficult of 
recognizing them. We also designed simple-recognition and 
discriminative-recognition tasks and the former were for 
comparative test. We were always interested in common 
visual evoked ERP components, like N1, N2 and P3, for their 
underlying possibility of contributing to classification. To this 
end, we intended to explore the difference of EEG waveforms 
between targets and nontargets on two different conditions by 
difference potentials. From the difference potentials we can 
find out which components can be mainly counted on for 
effective target detection. Classification for single trial ERP 
data was performed using stepwise discriminate analysis 
(SWDA) [5] followed by linear discriminate analysis (LDA) 
and AdaBoost algorithm [6] to evaluate whether the target 
detection for finer categories could be feasible. 
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II. METHOD 

A. Experiment and Data acquisition 

Ten volunteers including eight men and two women with a 
mean age of 24 years participated in this study. All 
participants had normal or correct-to-normal vision. Subjects 
were instructed to carry out a target detection task during 
display of a sequence of animal pictures. We had 120 
experimental images for eight different animals (e.g. cat, frog 
and fish), 15 images for each. Each animal category may 
include animals from different subcategories (species). The 
images were all from Google images. Contents which are 
unrelated to the animal objects in all our images were got rid 
of in advance in case it was too difficult for subjects to 
recognize them.  All these images were normalized into the 
same size (640 x 480) and illumination. In addition, all animal 
objects were adjusted to be in the center of images so that it 
would be unnecessary for subjects’ eyes to move dramatically 
to capture the objects; hence, disturbance from 
electrooculography (EOG) could be decreased. 

Subjects were instructed to perform discriminative- and 
simple-recognition tasks in disparate sessions of runs. In the 
discriminative-recognition condition, targets of the same 
category in a run were all different from each other, while in 
the simple-recognition condition targets in a run were all the 
same. Every subject will finish two sessions in each condition 
alternately. Of each trial, 80 images would be randomly 
displayed with no continuous target images, among which 
12.5% contains targets while others did not. Every animal 
category contributed 10 images which were randomly chosen 
from each 15 images. Images were presented in series for 
durations of 500 milliseconds and another 500 milliseconds 
for nothing but background between every two images, i.e. the 
time interval of every two consecutive images is one second. 
In practical, subjects were required to click the mouse with 
their habit side hands after their recognition of targets as soon 
and exactly as possible. At the beginning of every trial, 
subjects stared at a fixation cross at the center of the screen. 

EEG data was acquired using a NeuroScan SynAmp2 
system from a standard electrode cap in which 60 electrodes 
inlaid at locations according with the International 10-20 
system and EOG data from two electrodes placed above and 
below the left eye. Data was sampled at 1000Hz. 

B. Data preprocessing and Data analysis 

Before further processing, the recorded EEG data were 
preprocessed in the following steps: band-pass filtering 
(0.5-30 Hz), ocular artifacts reduction and baseline correct. 
After that, the data were broke up into epochs. Each epoch 
comprised a 1 second segment of EEG, 200 milliseconds 
before, 800 milliseconds after the onset of stimuli. The 200ms 
before the stimulus onset were used to correct their baseline. 
In order to get clean EEG signatures to analyze and compare 
the difference of ERP components on different conditions, we 
discarded all epochs if epochs recorded contained 
peak-to-peak amplitude exceeding 100�V, indicating remain 
ocular artifacts and false clicked epochs were also discarded. 
This accounted for 1.25% of the measurements. For both two 
conditions, averages of 3.41% target epochs (range 

8861-9593) and 0.94% nontarget epochs (range 63759-67119) 
were left with us per subject. Then, the remained target and 
nontarget epochs were averaged on each condition, each 
subject and each electrode. Then, all the data were resampled 
to 100Hz. Finally, the averaged nontargets epochs were 
subtracted from the averaged target epochs for each subject, 
each electrode and each condition. Further analysis would be 
performed on the difference potentials. But when the EEG 
data were used for offline classification, no epochs were 
abandoned. 

In order to measure the significance of difference ERP 
components evoked by intended and distracted stimuli, we 
applied the method of a paired t-test on the difference 
potentials for each electrode and condition. We used the 
method of Guthrie and Buchwald [7] to correct for multiple 
testing that at least four consecutive samples (equivalent to 
40ms) [8] should be significantly different from zero in order 
to be considered as a segment indicating remarkable 
difference.  

C. Offline classification 

EEG data from all 60 electrodes were used for single trial 
classification. Here, each epoch only included 800 
milliseconds length of EEG data after the onset of stimuli and 
was represented as a feature vector of length 4800 (electrodes 
* EEG samples). Each epoch were depicted by a 16*80*4800 
matrix (sessions * trials * feature dimensions) for every 
subject on each condition. Because of the high dimensions of 
features, we first applied SWDA [5] on all ten subjects’ EEG 
data to choose most useful features. The dimensions of 
features of an epoch were at last reduced to about 2100.In this 
paper , we used the AdaBoost algorithm come up with by 
Freund and Schapire [6] to improve the performance of the 
often used LDA in single trial classification [9]. Given a 
training set (x1, y1),…, (xm, ym) where xi represents input 
samples, m is the size of samples, and yi �{-1, +1} is the class 
label of each sample. AdaBoost trains a new certain base 
classifier ht on each round r = 1,…, R in series. One of the keys 
of the algorithm is to preserve an ever-changing weight for 
every training sample. The weight of training sample i on 
round r is denoted Dr(i). To begin with, all samples’ weights 
are initialized equally, but wrongly classified samples’ 
weights are increased so that the base learner is guided to pay 
more attention to the tough samples in the training set.  

 The weights are updated followed by  
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The destination of the base learner is to minimize the error 

After the R-th iterator ends, the final classifier we get is 

R 
H(x) =sign( L atht(x)) · 

r=l 

(5) 

Receiver operating characteristic (ROC) analysis [10] is 

used to illustrate a binary classifier's performance as its 

discrimination threshold is varied. On the horizontal axis of a 

ROC curve is the rate of false positives and on the vertical axis 

of the curve is the rate of true positives. And we calculated the 

area-under-ROC curves (AUC) to measure the performance of 

our classification. 

III. RESULTS 

A. ERP components 

Spatiotemporal presentation of the amplitudes of the 

difference potentials for 60 electrodes on discriminative

recognition condition is presented in figure l(A). Remarkable 

segments can be observed directly from the highlighted 

aggregated color blocks. In figure l(B), spatiotemporal plot 

reveals that the significant remarkable segments, using the 

method described in section 11.B. The coupled lines in red or 

blue indicate the start and end of the stable segments which 

were affirmed to be ERP components. The plot in figure l(C) 

shows a glance at the grand average waveforms of the targets 

and nontargets on both two simple- and 

discriminative-recognition conditions. Modification of N2 

and P3 between targets on discriminative- recognition 

condition and those on simple-recoguition condition was 

strictly tested by the method described in section 11.B. 

1) Difference of ERPs between targets and nontargets on 

discriminative-recognition condition 

From figure l(B), we can easily find out that N2 and P3 

are the most remarkable difference between targets and 

nontargets on discriminative-recognition condition (both 

p<0.01). Though the difference of early segments between 

targets and nontargets in figure l(B) can be observed (p<0.05), 

segments vigorously overlapped can hardly be identified as 

certain kinds of components. In fact, we considered it the 

result of great imbalance of the number (9600 vs 67200) of the 

samples between them which led to different increase of SNR. 

In other word, the difference may reflect the noise level in 

collected EEG data which could even make classification 

results worse. This consideration was verified by the results of 

classification. What's more, the negligible difference of Nl 

between targets and nontargets on both conditions revealed 

that Nl also existed in the process ofrecognition and negation 

of nontargets which was associated with pattern recognition 

and stimulus classification [ 11]. Therefore, a potential trend 

of our rapid image searching task in finer categories was 

getting quite tough. 

2) Modification of ERPs between two conditions 
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Figure 1: (A) The total average of the amplitude of the difference potentials 

(µv) for discriminative-recognition condition. (B)The statistical significance 

(p-values) plot of the difference potentials. (C) Grand average of the target 

and nontarget waveforms for two conditions in contrast. 

Further observation for figure l(C) implies conceivable 

modification between ERP components between targets on 

two conditions. Average amplitude and 50% area latency [12] 

were used to calculate the amplitude and latency ofN2 and P3 

of targets for each electrode, each subject and each condition. 

The time ranges of N2 and P3 components are derived from 

the above paired t-test results on two conditions while the time 

ofNl was derived direct from observation on EEG waveforms. 

Then the time windows for amplitude and latency calculation 

were gained according to corresponding time ranges. Finally, 

t-test was performed to amplitude and latency data for each 

electrode. The t-test analysis revealed that, compared to 

simple-recognition condition, amplitude of P3 reduces 

(p<0.05 for most electrodes) and latency of P3 delays (p<0.01 

for all electrodes) in discriminative-recognition condition. 

These changes can be explained by the increased task 

difficulty in the discriminative-recognition condition [ 13]. 

What's more, amplitude and latency of Nl and amplitude of 

N2 have no remarkable modification between the two 

conditions (both p>0.01) on all electrodes, while latency of 

N2 delays on some electrodes, e.g. P3, PZ, P2 and POZ on 

discriminative-recognition condition compared to 

simple-recoguition condition. 

B. Ojjline classification 

We performed offline classification between targets and 

nontargets for different epoch segments after the onset of 

stimuli, i.e. 0-800ms (Nl, N2 & P3) and 200-800ms(N2 &P3). 

The results for 10 subjects are presented in figure 2. Five-fold 
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cross validation was performed for each subject and the 
average ROC for each subject was then gained using the 
algorithm from [10]. The accuracy of classification for ten 
subjects on different epoch segments is shown in table I with 
precision for nontargets above 70% .The averaged 
area-under-ROC for 0-800ms epoch segments was 0.8242, 
and that for 200-800ms epoch segments was 0.8288 which 
was even a little bit larger. And the p value of the t-test for the 
two groups of AUCs was 0.4822, so the classification results 
between the two groups could be considered to be no big 
different. From figure 2(C), it is easy to notice that 
classification using epoch segments of 200-800ms is better for 
some subjects. The results indicate that N1 and the earlier 
components (200ms after onset) have trivial contributions to 
classification for finer categories and noise in the early epoch 
segments can even lead the results worse to some extent.  

IV. CONCLUSION 

We studied the possibility and effectiveness of target 

detection for finer categories in the context of RSVP. We 

designed the simple-recognition and 

discriminative-recognition tasks for evaluating the change of 

different ERP components. We used a paired t-test method to 

explore those ERP components of which difference was 

remarkable. We found out that N1 components existed in EEG 

signatures of both targets and nontargets which revealed 

similar semantics-associated processes of recognition and 

stimulus classification in early phase and led to tough image 

searching tasks in finer categories. In fact, the difference 

between them was so trivial that N1 components could be 

considered to be limited to contribute to the detection of target 

stimuli as the classification results revealed. Average 

area-under-ROC for 0-800ms epoch segments was 0.8242 

which was slightly smaller than 0.8288 of that for 200-800ms 

epoch segments. The fact showed that speed of target 

detection for finer categories would be delayed after the 

latency of N1 components. 

From our study, N2 and P3 were still important and stable 

components for the classification between targets and 

nontargets, though the reduction of P3 amplitude in the 

discriminative-recognition condition may make the 

classification more difficult. The results of offline 

classification on single trial ERP detection indicated that it 

was feasible to do target detection for finer categories. The 

future work will focus on experiments of target detection for 

extended more kinds of finer categories and algorithms should 

be improved to gain better results of target detection. 
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TABLE I. ACCURACY OF CLASSIFICATION FOR TEN SUBJECTS 

ON DIFFERENT EPOCH SEGMENTS 
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Figure 2: Area-under-ROC of classification results. (A) Subject #1’s ROC 

curves for different epoch segments. (B) Subject #2’s ROC curves for 

different epoch segments. (C) Average area-under-ROC of five-fold cross 

validation for ten subjects. 
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