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Abstract²Advances in battery and actuator technology have 

enabled clinical use of powered lower limb prostheses such as 

the BiOM Powered Ankle. To allow ambulation over various 

types of terrains, such devices rely on built-in mechanical 

sensors or manual actuation by the amputee to transition into 

an operational mode that is suitable for a given terrain. It is 

unclear if mechanical sensors alone can accurately modulate 

operational modes while voluntary actuation prevents seamless, 

naturalistic gait. Ensuring that the prosthesis is ready to 

accommodate new terrain types at first step is critical for user 

safety. EMG signals from SDWLHQW¶V residual leg muscles may 

provide additional information to accurately choose the proper 

mode of prosthesis operation. Using a pattern recognition 

classifier we compared the accuracy of predicting 8 different 

mode transitions based on (1) prosthesis mechanical sensor 

output (2) EMG recorded from residual limb and (3) fusion of 

EMG and mechanical sensor data. Our findings indicate that 

the neuromechanical sensor fusion significantly decreases 

errors in predicting 10 mode transitions as compared to using 

either mechanical sensors or EMG alone (2.3±0.7% vs. 

7.8±0.9% and 20.2±2.0% respectively).  

 

I. INTRODUCTION 

Over 600,000 people are living with major lower limb 
amputation in the United States [1]. This number continues to 
grow as a consequence of traumatic incidents, recent military 
conflicts [2], but mainly due to the increase in the incidence 
of dysvascular disease.  In fact, dysvascular disease accounts 
for 82% of limb loss discharges. Over, 70% of those 
amputations are below the knee [3]. This incidence rate is 
expected to nearly double by the year 2030 [1]. There is a 
pressing need to provide this diverse population of trans-
tibial amputees with the best care and functional outcomes.   

Ankle functionality is not only crucial for vertical 
support, but also for forward progression of the body 
especially during normal and fast walking speeds [4]. Ankle 
prostheses are currently the most effective means of restoring 
lost function following a trans-tibial amputation. 
Mechanically passive prostheses are able to provide vertical 
stability and can restore the natural gait for low-speed 
walking in a satisfactory way [5, 6]. However, these passive 
devices often require amputees to make extra movements 
with their trunk, pelvis and residual limb leading to high 
metabolic energy cost and unnatural gait [6, 7]. Recently, 
advances in actuator, transmission and battery technologies 
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have extended the functionality of lower-limb prostheses 
beyond being passive devices to having powered joints [8, 9]. 
By enabling powered plantarflexion via timely application of 
joint torque at the toe-off, powered prostheses have the 
potential to restore natural gait and allow easy, metabolically 
efficient ambulation across diverse terrains. [6, 10-12].  

Several control strategies have been developed for 
powered ankle prostheses. These include pre-programmed 
actuation patterns [8, 12] that rely on the periodic nature of 
the gait cycle, impedance-based control based on a neuro-
muscular model of the foot-ankle complex [11, 13] and user 
motion-intent recognition control systems that use biological 
signals such as EMG along with the measure of ground 
interaction forces to adjust the operational mode of the device 
[14-15]. Ambulation over varying types of terrain ± such as 
level ground vs. stairs - requires a different operational mode 
for joint torque delivery. To switch operational modes, the 
prosthesis must either automatically detect a change in 
ambulation mode or the user must manually ³instruct´� WKH�
prosthesis to engage the intended mode of operation. Manual 
instruction by the user severely limits performance of non-
cyclic activities and smooth transitions throughout 
ambulation modes.  

Automated ambulation mode detection has been achieved 
using machine learning algorithms such as pattern-
recognition [15, 16]. Our group has recently shown that the 
fusion of residual limb EMG signals with the prosthesis 
mechanical sensor output leads to reliable detection of 
ambulation modes and joint control in a powered-knee 
prosthesis [16]. However, similar capability has not yet been 
shown for a powered ankle prosthesis. Additionally to date, 
evaluation of ambulation mode detection has been restricted 
to steady-state gate cycle within a mode, and has not been 
expanded to the detection of transitions among these modes 
[12]. Accurate initiation of an ambulation mode, or transition 
into/out of it, is equal in importance WR�³LQ-PRGH´�RSHUDWLRQ 
for achieving safe and reliable control of a powered 
prosthesis: the prosthesis has to enter the appropriate 
operational mode prior to the first heel strike upon the new 
type of terrain.  

The goal of our work was to evaluate the accuracy of 
detecting ambulation mode transitions using (1) mechanical 
sensor data only (2) EMG data only or (3) fusion of the two. 

 

II. METHODS 

A. Data Collection 

Data were collected from 5 unilateral trans-tibial amputee 

subjects (4 male, average age: 36±7 years, amputated limb: 

3 left and 2 right). All subjects were free of neuromuscular 

disorders and their amputations were all due to trauma 
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(average time since amputation: 8.2±4 years). Northwestern 

University institutional review board approved the study 

protocol and informed consent was obtained from each 

subject prior to experimentation. 
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Fig. 1. 8 walking mode transitions for (A) stairs and (B) ramp. The stairs 

used in the study were a continuous structure as indicated in A. The ramp 

used in the study was a single incline ramp 2.36m long terminating in a 

raised level platform. (C) 3 types of250ms epoch used for classification. 

Subjects were fit with commercially available powered 

ankle-foot prosthesis: BiOM [9] (Fig. 2D; manufactured by 

iWalk, Bedford, MA). The BiOM was either fit to the 

subject's existing, prescribed, socket or a custom socket was 

created for the subject by our clinical staff. Prior to the 

experimental trials and following the initial fitting, the 

BiOM's functional parameters (e.g. stiffness, damping, 

torque gain, etc.) were tuned to suit each subjects' 

preference in accordance to the manufacturer-recommended 

tuning procedure. Successful tuning was confirmed by each 

subject's ability to walk naturally over level ground without 

extraneous trunk, pelvic or residual limb movement as 

judged by a trained physical therapist. 

Subjects were instructed to walk at a comfortable, self

selected pace over 3 types of terrains: level ground, 4 

uniform stairs (18cm rise, 23.Scm run) and a 2.36m long 10° 

incline/decline ramp (Fig. 1). In addition to ambulation over 

these 3 types of terrains, a single baseline (B) trial was 

recorded for each subject during which subjects comfortably 

stood upright without moving for 15 seconds. 

Walking over the 3 terrains required subjects to make a 

total of 8 ambulation mode transitions. A single stair 

walking trial comprised subjects transitioning from level 

ground walking to ascending the set of stairs (LSA), 

transitioning onto level ground from stair ascent (SAL), 

walking over the level platform and transitioning into stair 

descent (LSD) and transitioning back to level ground from 

stair descent (SDL) (Fig. lA). A single ramp walking trial 

yielded 4 analogous ambulation mode transitions: Subjects 

transitioned from level ground to ramp ascent (LRA) and 

then from ramp ascent onto the level surface of of the 

elevated platform (RAL). Subjects proceeded to walk to the 

end of the platform (~3m), turned around and walked back 

along the platform from which they transitioned into ramp 

descent (LRD) and then from ramp descent back onto level 

ground of the floor (RDL). Subjects performed 12 trials of 

each type of ambulation mode transition, as well as 12 trials 

of ambulation over level ground. 

EMG data and mechanical sensor data from the BiOM 

(ankle moment, 3-axis IMU, pitch velocity, ankle angle, and 

gait phase indicator [9]) were collected during all trials. IR 

light-beam sensor output was synchronously recorded with 

EMG and BiOM sensor data during walking trials. Each trial 

was videotaped for offline analysis and validation. 

Four leg muscles from the amputated side were targeted 

for EMG data collection: Tibialis Anterior (TA), Peroneus 

Longus (PL), Gastrocnemius Lateralis (GL), and 

Gastrocnemius Medialis (GM). To ensure patient comfort 

and reduce the motion artifact due to motion of electrode 

poles relative to skin during walking, we used a novel gel 

liner system with embedded EMG electrodes to collect and 

record EMG signals from the below-knee (BK) muscles 

(Fig. 2) [17]. 

Fig. 2. Custom fabricated gel-liners with embedded EMG electrodes. 

Electrode leads exit the gel liner and travel along the outer surface of the 

liner (A) to conventional stainless steel snaps for connectivity with EMG 

data acquisition unit. Electrode poles are embedded within the gel layer of 

the liner and protrude through the layer to comfortably contact the 

subject's skin (B). Subjects wore these liners in place of their take-home 

liners (C) and the liners were used along with a subject's socket for 

attachment to the Bi OM powered ankle prosthesis (D). 

B. Data Analysis 

EMG signals were sampled using a custom 16-bit data 

acquisition system at lkHz and high-pass filtered at 20Hz to 

reduce motion artifact. Data from the following 8 

mechanical sensors (Mech) of the BiOM was sampled at 

500Hz and used in the analysis: prosthesis vertical 

acceleration, pitch angle, pitch velocity, velocity angle, 

accelerometer vertical and linear axes and angular 

acceleration in the sagittal and vertical planes. Both the 

EMG and Mech data from each of the 12 trials were 

segmented into 3 groups of 250ms epochs (Fig lC): 250ms 

epoch occurring 50ms before the toe-off (TO) of the mode 

transition step, 250ms epoch occurring 50ms after the TO of 

mode transition step, and 250ms epoch comprised of two 

125ms, each positioned 50ms prior and post the TO of the 

mode transition step. We imposed the 50ms padding on 
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Fig-3 Mean offline classification error of 10 mode transitions (A) and 6 

mode transitions (B) using BK-EMG data only, Mech data only, and BK

EMG with Mech data. Results are shown for three different time windows 

used in the analysis: 250ms prior to TO of mode transition step (white bars), 

250ms following the TO of mode transition step (black bars) and 250ms 

centered on the TO of the mode transition step (grey bars). Error bars 

represent 1 standard error. 

either side of the TO to prevent inclusion of the signal 

motion artifact in our analysis. EMG data was filtered 

offline using a 2nd order Butterworth band-pass filter (20Hz 

to 450Hz). A boxcar smoothing algorithm (25ms window) 

was applied to the recorded Mech data. 

Linear discriminant analysis (LDA) was used for 

classification of ambulation mode transitions [16,19]. LDA 

data windows were 250ms without overlap. Mean absolute 

value, zero crossings, slope sign changes, and waveform 

length time-domain (TD) features were extracted from the 

EMG data [18]. Mean and standard deviation TD features 

were extracted from the Mech data. 12 fold "leave-one-out" 

cross validation was used to evaluate classification error. 

III. RE SUL TS 

A. Ojjline classification accuracy of all mode transitions 

Across all subjects, the lowest mean error in predicting all 

8 (LSA, SAL, LSD, SDL, LRA, RAL, LRD, RDL) walking 

mode transitions along with B and L conditions was 2.3% 

(Fig 3A). This was achieved using the fusion of EMG 

signals from the 4 below-the-knee (BK) muscles and the 8 

Mech sensors, using a 250ms time window that spanned the 

TO of the mode transition step (Fig 3). Highest mean 

classification error of 30.5% resulted from using only BK

muscle EMG during the time window preceding the TO of 

the mode transition step. 2-way ANOV A indicated that 

classification errors achieved from using the three types of 

data windows (preTO, postTO and acrossTO) are 

significantly different from each other (p<O.O 1 ). 

Additionally, classification errors achieved from using the 

three types of data sources (BK-EMG only, Mech only and 

fusion of BK-EMG and Mech) are significantly different 

from each other (p<0.01). 

B. Ojjline classification accuracy excluding ramp 

Across all subjects, the lowest mean error in predicting 4 

(LSA, SAL, LSD, SDL) walking mode transitions along with 

Band L was 0.3% (Fig 3B). This was again achieved using 

the fusion of EMG signals from the 4 below-the-knee (BK) 

muscles and 8 Mech sensors, using a 250ms time window 

that followed the TO of the mode transition step (Fig 3). 

Similarly low classification errors were achieved when 

using the 250ms time window spanning the TO of the mode 

transition as well as using only Mech sensor data (0.6% and 

0.6%, respectively, Fig 3B). Highest mean classification 

error of 15% resulted from using only BK-muscle EMG, 

using the time window preceding the TO of the mode 

transition step. 2-way ANOV A indicated that classification 

errors achieved from using the three types of data windows 

(preTO, postTO and acrossTO) are not significantly 

different from each other (p=0.19). However, classification 

errors achieved from using the three types of data sources 

(BK-EMG only, Mech only and fusion of BK-EMG and 

Mech) are significantly different from each other (p<0.01). 

IV. DISCUSSION 

This analysis of mode transition data collected from 5 

trans-tibial amputees demonstrated that the use of 

neuromechanical sensor fusion can discriminate among 10 

different types of terrain transitions with a very low error 

rate of 2.3%. Data from only mechanical sensors yields 

higher error rates of 7.8% while data from only EMG 

sensors yields error rates in the 10%+ range. The 

observation that the fusion of Mech and EMG data leads to 

best performance may be explained by the notion that EMG 

signals leverage the amputee's anticipation of the upcoming 

terrain type, while Mech sensor data captures the kinematics 

during the transition onto a new terrain type. When 

considering ambulation over level ground, stairs and ramps, 

this notion is supported by our findings that using a 250ms 

window spanning the TO event of the mode transition step 

resulted in significantly lower classification errors. Second

lowest errors were achieved when using a time window that 

followed the TO event. 

Based on our clinical experience with trans-tibial 

amputees and as evidenced by previous studies [ 5], 

ambulation over lower grade ramps such as the one used in 

this study, resembles ambulation over level ground in terms 

of kinematic requirements (although with a small shift in 

ankle angle). We, therefore, performed additional analysis in 

which we removed transitions associated with ramps (Fig. 

3B). Results of this analysis indicated that using only the 

Mech data can yield nearly the same classification 

performance (0.6% error) as the use of Mech and EMG data 

together (0.3%). When using Mech data alone, this 

negligible classification error is achieved when with the 

postTO time window. Mechanical sensors yield significantly 
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more consistent signals than the EMG sensors and this 

consistency can reliably reflect the drastic dynamic changes 

in foot trajectory as related to ambulation mode transitions.  

It could certainly be argued that the use of Mech data 

alone does not impose a great penalty on the accuracy of 

classification as compared to the use of both EMG and 

Mech data, especially in the case when ramp transitions are 

not considered.  It is important to consider, however, that 

accurate function of a lower-limb prosthesis is directly 

linked to patient safety and as such, any improvement in 

functional performance further reduces risk of fall or injury. 

There is also another vital benefit to using EMG signals in 

conjunction with the mechanical sensor data: a 

neuromuscular interface enables the patient to voluntarily 

actuate the prosthesis outside of walking to perform other 

activities such as reaching up via raising oneself up on their 

toes or simply repositioning their foot for comfort [19]. 

Lowest classification error resulted from using the time 

window that spans the TO of the mode transition step.  A 

possible explanation for this finding is that such a window 

benefits from both the anticipatory nature of the biological 

signal and the reactive nature of the mechanical signal. 

Future analysis of the data will evaluate this hypothesis. The 

250ms time window following the TO also yields accurate 

classification, however, the remaining time prior to the next 

heel strike may not be sufficient to smoothly transition the 

prosthesis into the proper operational mode. For real-time, 

online implementation, the LDA classifier can make an 

accurate decision regarding the ambulation mode of the 

upcoming step within the 250ms of the window spanning 

the TO. Since this time window extends only 125ms beyond 

the TO event, there would be sufficient time to adjust the 

parameters of the powered prosthesis in a smooth manner to 

accommodate the upcoming HS. 

 One limitation of our methodology is that we utilized a 

novel means of collecting EMG data, using a liner with 

embedded EMG electrodes. Although not conventional, this 

method has been used successfully in other instances for 

collection of EMG data from lower limb amputees as 

described by Lipschutz et. al. [17]. This novel approach 

avoids discomfort experienced by amputees stemming from 

conventional, rigid electrodes pressing into sensitive areas of 

WKH�DPSXWHH¶V�UHVLGXDO�OLPE.  

The findings of this study indicate that neuromechanical 

sensor fusion used with a pattern recognition-based 

classifier can accurately predict the onset of as many as 10 

different ambulation mode transitions. The demonstrated 

approach is computationally efficient and can be expanded 

to enable voluntary control of the prosthesis by the amputee. 
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